

www.saber.ula.ve/avancesenquimica Avances en Química, 5(2), 95-98 (2010)

Artículo científico

Flavonoids from Urena sinuata L.

Adakarleny Sosa & Carmelo Rosquete*

Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias. Universidad de los Andes, Mérida 5101, Venezuela.

(*) carmelor@ula.ve

Recibido : 12/02/2010	Revisado : 28/06/2010	Aceptado: 07/07/2010

Resumen

En este manuscrito se reportan los resultados obtenidos del estudio fitoquímico de las hojas frescas de *Urena* sinuata L. (cadillo de perro). Los componentes mayoritarios identificados fueron los flavonoides: 3'- β -Dglucopiranosil-6,7-*O*-dimetilquercetagetina (**I**), 4'- β -D-glucopiranosil-6,7-*O*-dimetilquercetagetina (**II**) y 3- β -Dglucopiranosil-6,7-*O*-dimetil-quercetagetina (**III**). Los compuestos aislados fueron caracterizados mediante sus constantes físicas y el análisis de sus espectros ultravioleta, de masas y de resonancia magnética nuclear mono- y bi-dimensionales. También se muestran los resultados obtenidos para estos compuestos en el ensayo de citotoxicidad sobre *Artemia salina*.

Palabras claves: Urena sinuata; flavonoides; glicósidos de flavonoles; derivados de quercetagetina

Abstract

In this work it is exposed the obtained results of the phytochemical study of the fresh leaves of *Urena sinuata* L. (dog wart). The major components are the flavonoids: quercetagetin-6,7-*O*-dimethylether-3'- β -D-gluco-pyranoside (I), quercetagetin-6,7-*O*-dimethylether-4'- β -D-glucopyranoside (II), and quercetagetin-6,7-*O*-dimethylether-3- β -D-glucopyranoside (III). These products were characterized through their physical constants, UV, MS, and oneand two-dimensional NMR studies. By other hand, the obtained results of the *Artemia salina* cytotoxicity bioassay carried out to the isolated products are exposed.

Keywords: Urena sinuata; Flavonoids; Flavonol glycosides; Quercetagetin derivatives

Introduction

Urena L. (Malvaceae) is a genus composed by two species: *Urena lobata* L. and *Urena sinuata* L. although some Botanist suggest that *U. sinuata* is subspecie of *U. lobata*. This plant (*U. lobata*) has been phytochemically studied by some authors, and steroids (stigmasterol and β-sitosterol)¹, xanthones (mangiferin)², flavonoids (quercetina²⁻⁴, kaempferol, hypolaetin, gossypetin, luteolin, apigenin and chrysoeriol³), sugars (glucose, mannose, xylose and fructose)⁵, and vitamins (ascorbic acid)⁵ has been reported. For *U. sinuata* only has been reported fatty acids: sterculic and malvalic acids⁶.

In Venezuela, the infusion of foliage from *Urena sinuata* L. is used as anti-inflammatory, analgesic, and against kidney pain and gall stone⁷. For *U. lobata* antiparasitic^{8,9}, antibacterial¹⁰⁻¹², antidiarrheal¹³, and immunomodulatory activity¹⁴ have been mentioned.

Experimental

General Experimental Procedures

IR spectra were recorded as KBr disc on a Perkin Elmer FT-IR Spectrometer 1725X. UV spectra were recorded on

an UV Varian Scan 3 using methanol as solvent. NMR spectra were run on Bruker Avance DRX 400 using CDCl₃ as solvent and TMS as internal standard. Mass spectra were recorded on a Hewlett-Packard Mass Spectrometer model 5930^a (70 eV). Si gel 60 (Merck, 70-230 mesh) with dry assembly was used in CC and Si gel Merck HF 254 $(10 - 40 \mu)$ on glass sheet (0.25 and 0.5 mm thickness, respectively) was used as adsorbent for TLC and PTLC.

Plant Material

Urena sinuata L. (Malvaceae) was collected at San Cristóbal suburbs (Táchira State-Venezuela). Voucher specimens were stored at MERC Herbarium, Sciences Faculty, Universidad de los Andes-Venezuela.

Extraction and Isolation

1 Kg of fresh plant was extracted in a Soxhlet with *n*-hexane, dichloromethane, acetone and methanol successively. Hexane extract was percolated on Sephadex LH- $20^{\text{®}}$ column for eliminate chlorophylls and analyzed by GC/MS. None additional to previously reported interesting compounds was detected⁶. Dichloromethane extract (10.0 g) afforded before Si gel CC hexadecyl 4-

monoitaconate (500 mg) as mainly product. Acetone extract (8.9 g) was also percolated on Sephadex LH-20[®] column for eliminate chlorophylls using firstly a mixture of *n*-hexane/chloroform/methanol (1:1:1) and then methanol, as solvents. From methanol eluate (525 mg) were obtained, before PTLC using *n*-hexane/acetone (1:8) x 8 as eluent, quercetagetin-6,7-O-dimethylether-3'- β -D-glucopyranoside, **I** (63 mg), quercetagetin-6,7-O-dimethyl-ether-4'- β -D-glucopyrano-side, **II** (72 mg), and quercetagetin-6,7-O-dimethylether-3- β -D-glucopyranoside, **III** (45 mg).

Biological Essay

Artemia salina cytotoxicity test was performed following the procedure described by Meyer et al.¹⁶

Quercetagetin-6,7-O-dimethylether-3'B-D-glucopyrano-

<u>side</u>, <u>I</u>: dark yellow prisms, mp > 300 °C. IR (*KBr*) v_{max} : 3377, 2923, 1654, 1554, 1130, 812 cm⁻¹. UV (MeOH): see Table 2. ¹H- and ¹³C-NMR (CDCl₃): see table 1. MS m/z: [M]^{+.} 508 (< 1), [M – Glu + H]^{+.} 346 (100), [M – Glu – H₂O + H]^{+.} 328 (31), [M – Glu – H₂C=C=O + H]^{+.} 303 (66), [M – Glu – H₂C=C=O – H₂O + H]^{+.} 285 (16), [M – Glu – H₂C=C=O – H₂O – CH₃ + H]⁺ 260 (9), [A₁ – OCH₃ – CO]⁺ 137 (19).

Quercetagetin-6,7-O-dimethylether-4'-β-D-glucopyrano-

<u>side, II</u>: dark yellow prisms, mp > 300 °C. IR (*KBr*) v_{max} : 3378, 2929, 1654, 1547, 1131, 811 cm⁻¹. UV (MeOH): see Table 2. ¹H- and ¹³C-NMR (CDCl₃): see table 1. MS *m/z*: [M]^{+.} 508 (< 1), [M – Glu + H]^{+.} 346 (100), [M – Glu – H₂O + H]^{+.} 328 (34), [M – Glu – H₂C=C=O + H]^{+.} 303 (70), [M – Glu – H₂C=C=O – H₂O + H]^{+.} 285 (18), [M – Glu – H₂C=C=O – H₂O – CH₃ + H]⁺ 260 (9), [A₁ – OCH₃ – CO]⁺ 137 (19).

Quercetagetin-6,7-O-dimethylether-3-β-D-glucopyrano-

<u>side, III</u>: pale yellow prisms, mp > 300 °C. IR (*KBr*) v_{max} : 3413, 2945, 1658, 1556, 1134, 806 cm⁻¹. UV (MeOH): see Table 2. ¹H- and ¹³C-NMR (CDCl₃): see table 1. MS *m/z*: [M]⁺ 508 (< 1), [M – Glu + H]⁺ 346 (100), [M – Glu – H₂O + H]⁺ 328 (31), [M – Glu – H₂C=C=O + H]⁺ 303 (68), [M – Glu – H₂C=C=O – H₂O + H]⁺ 285 (16), [M – Glu – H₂C=C=O – H₂O – CH₃ + H]⁺ 260 (9), [A₁ – OCH₃ – CO]⁺ 137 (19).

Results and Discussion

All compounds, **I** to **III**, showed very similar IR, mass and ¹³C-NMR spectra and only slight differences at ¹H-NMR spectra (see table 1). The whole analysis of 1D spectroscopic data allowed us to determine that **I** to **III** correspond to flavone-type compounds, *O*-substituted at 3, 5, 6, 7, 3', and 4' positions, with one β -D-glucopyranosyl (mainly identified by ¹³C-NMR chemical shift), two

methoxyl, and three hydroxyl groups as substituents. HMBC experiments confirmed us that methoxyl groups were placed at 6 and 7 positions for all three compounds, remain therefore to insert the β -D-glucopyranosyl group between 3, 5, 3' and 4' positions, which was made using shift reagent for UV spectra.

During UV spectra analysis of the compounds (see table 2) were observed: For compound **I**, the bathochromic shift for band I (+ 42 nm) showing a low intensity decrease with in time (hypochromic effect) observed when UV spectrum was recorded in methanol + sodium methoxyde can let us to place hydroxyl group on positions 3 and 4'. When UV spectrum was recorded in methanol + AlCl₃, a + 53 nm bathochromic shift was observed; that shift remain unchanged after hydrochloric acid addition, which place hydroxyl group on positions 3 and 5. In consequence, the β -D-glucopyranosyl moiety should be located on 3' carbon, and compound **I** should be quercetagetin-6,7-*O*-dimethylether-3'- β -D-glucopyranoside.

Similar to **I**, compound **II** showed for band I, a bathochromic shift (+ 54 nm) in presence of AlCl₃ and AlCl₃ + HCl, which place hydroxyl groups on positions 3 and 5 too. The bathochromic displacement (+ 42 nm) of band I observed after sodium methoxyde addition without in time intensity decrease, together with the existence of C3 hydroxyl group previously established, place in this case, the β -D-glucopyranosyl moiety on C4', and compound **II** should be quercetagetin-6,7-*O*-dimethylether-4'- β -D-glucopyranoside.

Different to previously described compounds, band I of UV spectrum in methanol + $AlCl_3$ of compound III was affected after HCl addition, underwent a hypsochromic shift of -37 nm (respect to methanol + AlCl₃) which indicated the existence of an orto-dihydroxyl moiety on Bring (3' and 4' positions), which was corroborated by band I hypsochromic displacement (-32 nm) observed on methanol + sodium acetate UV spectrum after boric acid addition. The stability in time of the methanol + sodium methoxyde, together with the 12 nm bathochromic shift remanent respect to methanol UV spectrum observed on band I of methanol + $AlCl_3$ + HCl, place the third hydroxyl group on C5 carbon, and therefore compound III should be quercetagetin-6,7-O-dimethylether-3-β-D-glucopyranoside. Although this compound has been reported from Brickellia dentata¹⁵, none spectroscopic data has been published in reference 15 and references cited therein.

The UV β -D-glucopyranosyl moieties locations for **I-III** were confirmed by HMBC interactions observed between the hydrogen on anomeric carbon from each saccharide moiety and it flavonoid moiety carbon (3', 4', and 3, for **I**, **II**, and **III** respectively)

	I	Π	III
R_1	Glu	Н	Н
R_2	Н	Glu	Н
R ₃	Н	Н	Glu

Table 1: NMR data for compounds I – III.

	I			II		III	
	$\delta_{\rm C}$	$\delta_{\rm H}$, m (<i>J</i> Hz)	δ_{C}	$\delta_{\rm H}$, m (<i>J</i> Hz)	δ_{C}	$\delta_{\rm H}$, m (<i>J</i> Hz)	
2	156.9		156.8		156.6		
3	133.5		133.5		133.3		
4	177.8		177.9		177.7		
5	151.9		151.9		151.7		
6	131.9		131.8		131.6		
7	158.8		158.8		158.3		
8	91.4	6.85, s	91.3	6.82, s	91.2	6.83, s	
9	151.9		151.8		151.6		
10	105.5		105.5		105.3		
1'	121.3		121.3		121.1		
2'	116.5	7.62, d (2.0)	116.5	7.60, d (2.0)	116.3	7.61, d (2.0)	
3'	144.9		150.0		144.8		
4'	148.7		148.8		148.5		
5'	115.4	6.84, d (8.0)	115.4	6.83, d (8.0)	115.1	6.84, d (8.0)	
6'	121.8	7.61, dd (8.0, 2.0)	121.8	7.57, dd (8.0, 2.0)	121.6	7.58, dd (8.0, 2.0)	
1"	100.9	5.46, d (7.3)	100.9	5.44, d (7.3)	100.7	5.48, d (7.3)	
2"	76.6	3.23, dd (8.0, 7.3)	76.6	3.24, dd (8.0, 7.3)	76.5	3.19, dd (8.0, 7.3)	
3"	70.1	3.26, dd (8.0, 8.0)	70.0	3.25, dd (8.0, 8.0)	69.9	3.27, dd (8.0, 8.0)	
4"	74.3	3.08, dd (8.0, 8.0)	74.2	3.08, dd (8.0, 8.0)	74.1	3.08, dd (8.0, 8.0)	
5"	77.6	3.08, ddd (8.0, 5.5, 1.5)	77.6	3.07, ddd (8.0, 5.5, 1.5)	77.5	3.07, ddd (8.0, 5.5, 1.5)	
6''a	<i>c</i> 1 1	3.37, dd (11.5, 1.5)	<i>c</i> 1 1	3.34, dd (11.5, 1.5)	(1.0	3.55, dd (11.5, 1.5)	
6''b	61.1	3.30, dd (11.5, 5.5)	61.1 3.31, dd (11.5, 5.5)		61.8	3.29, dd (11.5, 5.5)	
6-OMe	60.3	3.71, s	60.3	3.73, s	60.3	3.71, s	
7-OMe	56.6	3.90, s	56.6	3.97, s	56.5	3.90, s	
5-OH		12.58, s		12.55, s		12.60, s	

Table 2: UV data for compounds I – III.

	UV λ_{max} (nm)					
	Ι		II		III	
	Band I	Band II	Band I	Band II	Band I	Band II
MeOH	352	256	352	259	353	258
MeOH+NaOMe	394↓	272↓	405	270	393	270
MeOH+NaOAc	404	258	376	266	407	256
NaOAc+H ₃ BO ₃	404	258	376	266	375	258
MeOH+AlCl ₃	405	271	406	276	402	273
MeOH+AlCl ₃ +HCl	408	272	406	274	365	266

↓ Intensities decrease in time.

Due to the frequently ingestion of *U. sinuata* leaves infusion by Andean peoples and, by other hand, by the possibility of use of the three flavonoids in pharmacological essays, the cytotoxicity of these compounds was tested. Compounds **I** to **III** showed similar values for $DL_{50} \approx 1000$ ppm, which point out the low cytotoxicity showed for the three compounds to *Artemia salina*¹⁶.

Hexadecyl 4-monoitaconate isolated from dichloromethane extract probably arises from fungus of the *Aspergillus* genus which colonized the plant material during the storage.

Conclusions

From *Urena sinuata* leaves, three quercetagetin glucosides were isolated and identified; two of them are new natural products. The presence of **I-III** in *U. sinuata* leaves difference chemically to this plant from *U. lobata*, from the which only flavonoid aglycones were isolated; this sentence support the location of these *taxa* in different species.

References

- S Lin, T Pan, C Horg. Chemical constituents of Urena lobata L. var. tomentosa (Blume) Walp (Malvaceae). Hua Hsueh, 41, 72-73 (1983).
- 2. K Srinivasan, S Subramanian. Isolation of mangiferin from *Urena lobata*. Arogya, 7, 140-141 (1981).
- I Matlawska. Investigation of flavonoid compounds of select species from Malvaceae family. Herba Polonica, 36, 65-69 (1990).
- I Matlawska, M Sikorska. Flavonoid compounds in the flowers of *Urena lobata* L (Malvaceae). Acta Pol. Pharm., 56, 69-71 (1999).
- D Bhatt, G Rawat. Chemical analysis of medicinal plants Urena lobata L and Abutilon indicum L. Orient. J. Chem., 17, 341-342 (2001).
- M Kittur, C Mahajanshetti, G Lakshminaroyana. Characteristics and composition *Trichosanthes bracteata*, *Urena sinuata* and *Capparis divaricata* seeds and oils. J. Oil Techn., 25, 34-41 (1993).
- Banco de Datos TRAMIL. Investigaciones pendientes. http://funredes.org/endacaribe/investigPendientespag11.html. Visited on February, 9th, 2010. 8:55 h.
- J Satalaya, J Rojas, B Ríos, M Grandez, E Rengifo, G Ruiz, D Gutiérrez, A Giménez, N Flores. Antiparasitic activity of medicinal plants from Peruvian Amazon. BIOFARBO, 17, 23-31 (2009).
- 9. J Nguyen-Pouplin, H Tran, H Tran, T Phan, C Dolecek, J Farrar, T Tran, P Caron, B Bodo, P Grellier. Antimalarial

and cytotoxic activities of ethnopharmacologically selected medicinal plants from South Vietnam. J. Ethno-pharmacol., **109**, 417-427(2007).

- U Mazumder, M Gupta, L Manikandan, S Bhattacharya. Antibacterial activity of *Urena lobata* root. Fitoterapia, 72, 927-929 (2001).
- 11. O Adeloye, A Akinpelu, O Ogundaini, A Obafemi. Studies on antimicrobial, antioxidant and phytochemical analysis of *Urena lobata* Leave extract. J. Phys. Nat. Sc., 1, 1-9 (2007).
- 12. R Mathappan, V Prasanth, C Jolly. M Somanath. Comparative study on the antibacterial activity of the methanolic extract of *Urena lobata* root and a standard marketed herbal formulation. J. Pharm. Res., 3, 953-955 (2010).
- A Yadav, V Tangpu. Antidiarrheal Activity of *Lithocarpus dealbata* and *Urena lobata*. Extracts: Therapeutic Implications. Pharm. Biol., 45, 223-229 (2007).
- 14. R Mathappan, V Prasanth, G Parthasarathy. Immunomodulatory activity of the methanolic extract of *Urena lobata* Linn. **Internet J. Pharmacol.**, **7**, (2009).
- A Ulubelen, B Timmermann, T Mabry. Flavonoids from Brickellia chlorolepis and B. dentata. Phytochemistry, 19, 905-908 (1980).
- 16. B Meyer, N Ferrigni, J Putnam, L Jacobsen, D Nichols, J McLaughlin. *Brine Shrimp*: a convenient general bioassay for active plant constituents. **Planta Medica**, 45, 31-34 (1991).