Síntesis de derivados nitrogenados de la podofilotoxina.

Synthesis of nitrogen derivatives from podophyllotoxin.

Santiago-Dugarte Carolina¹, Abad-Reyes Andrés¹, Bahsas Alí², Chacón-Morales Pablo¹.

¹Laboratorio de Productos Naturales. ²Laboratorio de Resonancia Magnética Nuclear. Departamento de Química. Facultad de Ciencias. Universidad de Los Andes, Mérida C.P. 5101, República Bolivariana de Venezuela.

Recibido septiembre 2013 - Aceptado enero 2014

RESUMEN

A partir de la resina comercial (Podofilina) de *Podophyllum emodi* se aisló la podofilotoxina (1). Este compuesto se utilizó como sustrato de partida para sintetizar la 7 β -azido-7-desoxipodofilotoxina (2), la *N*-metil-7-imino-7-desoxipodofilotoxina (3) y *N*-metil-7-amino-7-desoxi-neo-podofilotoxina (4). Todas las estructuras fueron determinadas mediante el análisis de sus espectros de infrarrojo por transformada de fourier (FT-IR) y resonancia magnética nuclear (RMN) uni-y bi-dimensionales. Se discute brevemente la propuesta del mecanismo para la formación de los derivados nitrogenados (3) y (4).

PALABRAS CLAVE

Podofilotoxina, iminas, lactamas, Podofilina, Podophyllum.

ABSTRACT

The podophyllotoxin (1) isolated from the commercial resin (Podophyllin) of *Podophyllum emodi* was used as a starting material to synthesize nitrogen derivatives, 7β -azide-7-deoxypodophyllotoxin (2), N-metil-7-imine-7- deoxypodophyllotoxin (3) and N-metil-7-amine-7-deoxy-neo-podophyllotoxin (4). All structures were determined by analysis of their FT-IR and uni- and bi-dimensional NMR spectra. A proposed mechanism for formation of compounds (3) and (4) is briefly discussed.

KEY WORDS

Podophyllotoxin, imine, lactam, Podophyllin, Podophyllum.

INTRODUCCIÓN

La podofilotoxina (1) es un metabolito secundario aromático que pertenece a la familia de los lignanos. La biosíntesis de estos compuestos proviene de la ruta del ácido shikímico, el cual evoluciona hasta formar un dímero constituido por unidades de fenilpropano [1]. Los lignanos están ampliamente distribuidos en la naturaleza y poseen una gran diversidad estructural [1-3]. El compuesto (1) es el lignano más abundante aislado de la podofilina [4], una resina obtenida del extracto alcohólico de las raíces y rizomas de las especies del género Podophyllum [2-3]; especialmente en el Podophyllum peltatum Linnaeus (comúnmente conocido como Mandrake Americano ó Mayapple), distribuido en el este de Norte América y Canadá, y el Podophyllum emodi Wallich, proveniente del continente Asiático. Este compuesto es un producto natural de gran interés por su actividad antimitótica, el cual es efectivo para diversos tipos de cánceres [5-6]. Debido a que es una sustancia altamente tóxica, no se permite su uso como fármaco sistémico, pero es el material de partida para la semi-síntesis de fármacos importantes en el tratamiento de células de cáncer de pulmón, testicular, leucemia, linfoma y sarcoma de Kaposi [3, 6-9]. Otra aplicación de la podofilotoxina (1), es en el tratamiento de la psoriasis vulgaris, donde se obtienen excelentes resultados [10]. Basado en lo anteriormente expuesto, se procedió a efectuar la síntesis de nuevos derivados de la podofilotoxina (1) con la finalidad de obtener compuestos que puedan presentar actividad biológica mejorada.

MATERIAL Y MÉTODOS

Equipos. La determinación de los puntos de fusión se hizo en un instrumento Fisher-Johns modelo 12-144.

Los espectros de IR se realizaron en KBr en un espectrofotómetro Perkin-Elmer modelo FT-1725X. Para los espectros de RMN se utilizó un equipo Bruker-Avance DRX 400 de 400 MHz para ¹H y 100 MHz para ¹³C. Las separaciones cromatográficas se hicieron en columnas empacadas con gel de sílice Merck 60 (63-200 µm, 70-230 mesh). Para la cromatografía de capa fina (TLC), se utilizaron placas Merck de gel de sílice HF 254 (0,25 mm espesor). Las placas fueron reveladas con una mezcla v/v de ácido acético-aguaácido sulfúrico, con una proporción 20:4:1(CH₃COOH - H_2O - H_2SO_4) y calentadas sobre placa térmica a 120 °C durante unos minutos. Las placas para cromatografía preparativa se montaron suspendiendo gel de sílice fluorescente (HF 254) en agua destilada (relación 1:2 p/p), y extendiendo luego la mezcla en piezas de vidrio. Las placas fueron activadas a 120 °C durante 24 horas.

Obtención de la podofilotoxina (1). Se disolvieron 100 g de resina comercial podofilina (Aldrich) de Podophyllum emodi W. (Berberidaceae), en acetato de etilo (CH₃CO₂C₂H₅) a 75 °C, seguidamente la solución se filtró por gravedad en caliente para luego realizar una extracción ácido-base con una disolución de bicarbonato de sodio (NaHCO₃) al 1 %, el solvente se evaporó al vacío en un rotavapor. El sólido impuro resultante fue recristalizado en benceno (C₆H₆) caliente, obteniéndose 25 g (25,0 %) de podofilotoxina (1). El proceso fue monitoreado por TLC y el compuesto fue purificado por cromatografía de columna. Se obtuvieron 21 g de un sólido blanco (P.F. = 182-183oC); IR vmax.(cm-1): 3470 (-OH), 3008-2838 (C-H), 1760 (-O-CO-R), 1588 (C=C); RMN-¹H (Tabla 1, Fig. 1, Fig. 2); RMN-¹³C (Tabla 1, Fig. 1).

Síntesis de la 7β-azido-7-desoxipodofilotoxina (2). Se disolvieron 1,32 g (20,00 mmol) NaN₃ en 8 mL de CHCl₃ y se mezclaron con 1,60 g (3,86 mmol) de (1), seguidamente se agregaron gota a gota 1 mL (13 mmol) de ácido trifluoroacético (CF₃CO₂H). La mezcla de reacción fue agitada por 15 min a temperatura ambiente. Luego fue añadida una disolución acuosa saturada de NaHCO₃ la capa orgánica fue lavada con agua y secada con sulfato de magnesio (MgSO₄), luego el solvente se evaporó en un rotavapor. La formación del producto fue monitorizada por cromatografía de capa fina y éste fue purificado por cromatografía en placa preparativa para dar 1,58 g de un sólido amarillo (93,0 %); (P.F. = 192-194°C); IR vmax. (cm⁻¹): 2102 (-N₃), 1776 (-O-CO-R), 1588 (C=C); RMN-¹H (Tabla 1, Fig. 1, Fig. 2); RMN-¹³C (Tabla 1, Fig. 1).

Síntesis de los productos N-metil-7-imino-7desoxipodofilotoxina (3) y N-metil-7-amino-7-desoxineo-podofilotoxina (4). A una solución de 7β-azido-7desoxipodofilotoxina (2) (0,1 g, 0,23 mmol) en 20 mL de MeOH se añadieron 20 mg de Pd/C 10 %. La mezcla se agitó a temperatura ambiente bajo corriente de hidrógeno por 72 h. El producto crudo fue filtrado y el solvente fue evaporado. La mezcla de reacción fue monitorizada por cromatografía de capa fina. Los productos (3) y (4) fueron separados mediante PTLC empleando como eluyente una mezcla de hexano-acetato de etilo (1:1). La N-metil-7-imino-7-desoxipodofilotoxina (3) se aisló como una resina de color amarillo; 3,2 mg (3,3 %) IR vmax.(cm⁻ ¹): 2916-2846 (C-H), 1772 cm⁻¹ (-O-CO-R),1588 cm⁻¹ (C=C); RMN-¹H (Tabla 1, Fig. 1, Fig. 2). La N-metil-7-amino-7-desoxi-neo-podofilotoxina (4) se aisló como una resina de color amarillo; 6,6 mg (6,7 %); IR vmax. (cm⁻¹): 2920-2850 (C-H), 1676 (-N-CO-R), 1590 (C=C); RMN-¹H (Tabla 1, Fig. 1, Fig. 2); RMN-¹³C (Tabla 1, Fig. 1).

Fig. 1. Ruta para la obtención de los productos 1, 2, 3, y 4.

TABLA 1	
Valores de Resonancia magnética (RMN)

Posición	d _c			d _H (J en Hz)				
	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)
1	131,4	127,3	-	129,3	-	-	-	-
2	133,3	132,6	-	132,0	-	-	-	-
3	110,0	111,3	-	112,5	6,51 (s)	6,59 (s)	6,48 (s)	6,49 (s)
4	148,0	149,5	-	147,1	-	-	-	-
5	147,9	147,8	-	147,6	-	-	-	-
6	106,4	109,1	-	108,0	7,11 (s)	6,80 (s)	6,79 (s)	6,68 (s)
7	73,0	60,0	-	62,6	4,76 (d,7)	4,78 (d, 4)	-	4,10 (d, 1)
8	41,0	37,4	-	42,5	2,80 (m)	2,94 (m)	2,81 (m)	2,69 (m)
9	71,5	68,0	-	62,7	a 4,60 (m)	a 4,31 (m)	a 4,32 (m)	a 3,73 (m)
					b 4,08 (d,d 10 , 9)	b 4,31 (m)	b 4,32 (m)	b 3,73 (m)
10 1	404.0	402.2		101,9	a 5,98 (s)	a 6,03 (s)	a 5,97 (d, 1)	a 5,98 (d, 1)
	101,6	102,3	-		b 5,96 (s)	b 6,01 (s)	b 5,94 (d, 1)	b 5,97 (d, 1)
11	56,5	56,8	-	57,1	3,76 (s)	3,74 (s)	3,73 (s)	3,77 (s)
12	60,9	61,2	-	61,6	3,81 (s)	3,79 (s)	3,79 (s)	3,83 (s)
13	56,5	56,8	-	57,1	3,76 (s)	3,74 (s)	3,73 (s)	3,77 (s)
14	-	-	-	28,1	-		2,56 (s)	2,73(s)
1'	135,6	135,5	-	137,9	-	6.92 (d, 12.5)	-	-
2'	108,7	108,8	-	102,1	6,37 (s)	6,25 (s)	6,26 (s)	6,31 (s)
3'	152,8	153,1	-	153,9	-	-	-	-
4'	137,5	137,9	-	137,0	-	-	-	-
5'	152,8	153,1	-	153,9	-	-	-	-
6'	108,7	108,8	-	102,1	6,37 (s)	6,25 (s)	6,26 (s)	6,31 (s)
7'	44,3	44,2	-		4,6 (m)	4,60 (d, 5)	4,53 (d, 2)	4,31 (d, 1)
8'	45,5	41,7	-	51,8	2,80 (m)	3,18 (dd, 14; 5)	3,30 (dd, 4; 3)	2,52 (s)
9'	174,5	174,5	-	175,1	-	_	-	-
-OH	-	-	-	-	2,27 (s)	-	-	-

(1): Podofilotoxina RMN 1H CDCl3, 400 MHz; RMN 13C CDCl3, 100 MHz

(2): 7β-azido-7-desoxipodofilotoxina RMN 1H CDCl3, 400 MHz; RMN 13C CDCl3, 100 MHz

(3): N-metil-7-imino-7-desoxipodofilotoxina RMN 1H CDCl3, 400 MHz; RMN 13C CDCl3, 100 MHz

(4): N-metil-7-amino-7-desoxi-neo-podofilotoxina RMN 1H CDCl3, 400 MHz; RMN 13C CDCl3, 100 MHz

RESULTADOS Y DISCUSIÓN

Los datos de RMN-¹H (Fig. 1, Tabla 1) y RMN-¹³C (Fig. 1, Tabla 1) del compuesto (1) permitieron determinar el número de hidrógenos y de carbonos presentes en la molécula, y también, el grado de hibridación y tipo de sustitución de cada carbono, con lo cual fue posible establecer la fórmula molecular $C_{22}H_{22}O_8$. Esta fórmula molecular exige doce grados de insaturación. Una de las insaturaciones corresponde a un grupo carbonilo [IR, vmax.: 1760 cm⁻¹ (-O-CO-R); RMN-¹³C, δ C: 174,5 (-O-<u>C</u>O-R; C-9')], ocho pertenecen a dos anillos aromáticos [IR, vmax.: 1588 cm⁻¹ (C=C) y 756 cm⁻¹ (=CH); RMN-¹³C, δ C: 131,4 (=<u>C</u><; C-1); δ C: 133,3 (=<u>C</u><; C-2); δ C: 110,0 (=<u>C</u>H; C-3), δ C: 148,0 (=<u>C</u><; C-4), δ C: 147,9 (=<u>C</u><; C-5); δ C: 106,4 (=<u>C</u>H; C-6); δ C: 135,6 (=<u>C</u><; C-1'); δ C: 108,7 (=<u>C</u>H; C-2'/C-6'); δ C: 152,8 (=<u>C</u>H; C-3'/C-5'); δ C: 137,5 (=<u>C</u><; C-4'); RMN-¹H: δ H: 6,51, s, (=C<u>H</u>; H-3); δ H: 7,11, s, (=C<u>H</u>; H-6);

 δ H: 6,37, s, (=C<u>H</u>; H-2'/H-6')]. Dado que en los espectros IR y RMN-13C no existe evidencia de otros grupos funcionales que aporten insaturaciones se puede establecer que el compuesto es pentacíclico. La decima insaturación corresponde a la fusión del grupo metilendioxi [δC: 101,6 (>CH2; C-10); RMN-¹H: δ H: 5,98, s, (>CH₂, H-10a); δ H: 5,96 (s) (>CH₂; H-10b)] con el anillo aromático (esto se establece mediante las correlaciones C-4 \leftrightarrow H-10a-H-10b / C-5 \leftrightarrow H-10a-H-10b observadas en el espectro HMBC). La unión de los metínos δC : 73,0 (>CH; C-7); δC : 43,0 (><u>C</u>H; C-8); δC: 44,3 (><u>C</u>H; C-7'); δC: 45,5 (><u>C</u>H; C-8') [RMN-¹H: δH: 4,76 (d) (>CH, H-7); δH: 2,80 (m) (>CH, H-8); δH: 4,6 (m) (>CH, H-7'); δH: 2,80 (m) (>CH, H-8')] y los carbonos aromáticos δ C: 131,4 $(=\underline{C}<; C-1); \delta C: 133,3 (=\underline{C}<; C-2)$ genera el anillo ciclohexánico; la conexión entre estos carbonos se confirma mediante las correlaciones C-2 \leftrightarrow H-7' \leftrightarrow C-8 /H-8 \leftrightarrow C-7 \leftrightarrow H-6 / C-8 \leftrightarrow H-8'/ C-8' \leftrightarrow H-8 observadas en el espectro HMBC. La insaturación restante pertenece a la B-lactona formada por los metínos C-8, C-8', el carbonilo C-9' y el metileno oxigenado δC: 71,5 (>CH₂; C-9) [RMN-¹H: δH: 4,60 (m) (>CH₂, H-9a); δH: 4,08 (d,d) (>CH₂, H-9b)]; la presencia de este anillo heterocíclico se confirma por medio de los cruces H-8' \leftrightarrow C9' \leftrightarrow H-9a \leftrightarrow C-8 del espectro HMBC. En el espectro RMN-¹H se observan dos singuletes a δH: 3,81 (-OCH₃, H-12) y δH: 3,76 (-OCH₃, H-11/H-13) [RMN-¹³C, δC: 60,9 (-OCH₃; C-12); SC: 56,5 (-OCH₃; C-11/C-13)] que integran para tres (3) y seis (6) protones respectivamente; éstos corresponden a los metilos del grupo trimetoxifenilo; la correlación H-8' \leftrightarrow C-1' \leftrightarrow H-7' del espectro HMBC. Por otro lado, según las correlaciones H-9b ↔ $H-7 \leftrightarrow H-8' \leftrightarrow H-7'$ observadas en el espectro NOESY, quedó establecido que el grupo trimetoxifenilo, el carbonilo lactónico y el grupo hidroxilo están ubicados en posición α . Con ello fue posible concluir que el compuesto en estudio era la podofilotoxina (1). El compuesto (2) (7β-azido-7-desoxipodofilotoxina)

El compuesto (2) (7β-azido-7-desoxipodofilotoxina) se purificó como un sólido de color amarillo. El análisis comparativo de los espectros de RMN uni- y bidimensionales del compuesto frente a los del sustrato (1), puso en evidencia cuatro cambios significativos: la ausencia de banda de absorción de grupos –OH del espectro IR, la aparición de una banda intensa producto de la vibración de tensión del doble enlace acumulado del grupo –N3 [vmax.: 2102 cm⁻¹ (-N₃)], la desaparición de la señal atribuida al protón hidroxílico observada en el espectro RMN-¹H de PPT (1) (Fig. 2) y la disminución de la constante de acoplamiento de H-7 (Tabla 1, Fig. 2), lo cual se debe a una variación en los ángulos diedros H-7 ^C-7

^{\wedge}C-8 ^{\wedge}H-8. La estereoselectividad de esta reacción se debe a que al formarse el carbocatión bencílico por la salida del grupo –OH (luego de haber sido protonado), el ataque del -N₃ en la cara α se ve impedido por el efecto estérico que ocasiona el trimetoxifenilo.

La *N*-metil-7-imino-7-desoxipodofilotoxina (3) fue aislada como un sólido amarillo, al contrastar sus espectros de IR, RMN-¹H y ¹H-¹H COSY con los del compuesto (2) se pueden apreciar tantas diferencias que justifican la formación de la imina (3). En el espectro IR desaparece la señal del grupo -N₃ y espectro RMN-¹H se observa la ausencia del doblete correspondiente al protón H-7 y la aparición de un nuevo singulete metílico [δ H: 2,56 (=NC<u>H</u>₃, H-14)] (Fig. 2) cuyo desplazamiento químico concuerda con el de metilos unidos a nitrógenos imínicos [11].

La N-metil-7-amino-7-desoxi-neo-podofilotoxina (4) se aisló como un sólido amarillo, en su espectro RMN-¹³C se aprecia el apantallamiento de la señal asignada a C-9 (Tabla 1) [δC: 62,0; Δδ: -5,3 ppm respecto a C-9 en (1), δ C: 68,0], entendible en función de la apertura del anillo lactónico. Esto es congruente con la absorción de hidroxilo en el espectro IR [vmax: 3390 cm⁻¹ (O-H)] y el apantallamiento de los protones asignados como H-9a/H-9b que se observa en su espectro RMN-¹H (δ H: 3,73; $\Delta\delta$: -0,58 ppm respecto a H-9a/H-9b en (1), δH: 4,31) (Fig. 2). Con base en el análisis de los espectros ¹H, ¹H-COSY, HMQC y HMBC se estableció la estructura de la lactama (4). La ubicación del anillo lactámico en la cara α de la molécula se justifica en función de tres argumentos elementales: Debido a que el carbonilo C-9' tiene orientación α , el nitrógeno ubicado en C-7 necesariamente debe estar en disposición a para que la lactamización se vea favorecida. La reducción de la imina (3) debe efectuarse en la cara β debido al impedimento estérico que ocasiona el grupo trimetoxifenilo en disposición α , esto obliga a que la amina resultante posea orientación α . La constante de acoplamiento del protón H-7 es muy pequeña (1 Hz, Tabla 1, Fig. 2) esto exige que el ángulo diedro H-7/H-8 tenga un valor muy próximo a 90°; según lo indican los modelos de (4), esto se consigue cuando la β -lactama se encuentra en disposición α .

El mecanismo propuesto para la formación de los productos (3) y (4) a partir de la podofilotoxina (1) inicia con la sustitución nucleofílica SN1 del grupo hidroxilo ubicado en C-7 formando el compuesto (2) (Fig. 3). La azida (2) es sometida a un proceso de hidrogenación catalítica (H2 / Pd/C al 10 % / CH3OH) pero en lugar de formarse la amina primaria, el grupo -N3 se fragmenta liberando N2 y promoviendo el ataque del nitrógeno restante al medio de reacción. Así pues, en un proceso concertado, el oxígeno del CH_3OH sustrae el protón H-7 a la vez que se forma el doble enlace imídico y el nitrógeno ataca al metilo del CH_3OH , generando el producto (3) (Fig. 3). El compuesto (3) se reduce formando una *N*-metilamina que ataca intramolecularmente al carbonilo C-9' promoviendo la apertura del anillo lactónico y formando la β -lactama (4) (Fig. 3).

Fig. 2. Superposición de los espectros de RMN- 1 H de (1), (2), (3) y (4).

Fig. 3. Mecanismo propuesto para la formación de los productos (3) y (4).

CONCLUSIONES

La formación de los derivados (3) y (4) es novedosa, por esta razón este grupo de investigación está desarrollando actualmente experimentos orientados al estudio detallado del mecanismo y la optimización de los parámetros de la reacción para incrementar los rendimientos obtenidos. Esto permitirá efectuar ensayos de la actividad de los compuestos (3) y (4) frente a diferentes líneas de células cancerosas

AGRADECIMIENTOS

Este trabajo fue financiado por el Consejo de Desarrollo Científico, Tecnológico, Humanístico y de las Artes de la Universidad de Los Andes (CDCHTA-ULA, Proyectos N° C-1808-12-08-A y C-1009-12-08-Ed).

REFERENCIAS BIBLIOGRÁFICAS

[1] Campbell M, Sainsbury M, Searle A. The biosynthesis and synthesis of shikimic acid, chorismic acid, and related compounds. University of Bath. England. 1992.

[2] Gordaliza M, García P, Miguel del Corral J, Castro M, Gómez-Zurita M. Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon. 2004; 44(4): 441-459.

[3] Ayres D, Loike J. Lignans chemical, biological and clinical properties. Cambridge. University Press. 1990.

[4] Jackson D, Dewick P. Aryltetralin Lignans from *Podophyllum hexandrum* and *Podophyllum peltatum*. Phytochemistry. 1984; 23(5): 1147-1152.

[5] Cragg G, Newman D. Plants as a Source of Anti-cancer Agents. J Ethnopharmacol. 2005; 100: 72-79.

[6] Utsugi T, Shibata J, Sugimoto Y, Aoyagi K, Wierzba K, Kobunai T, *et al.* Antitumor Activity of a Novel Podophyllotoxin Derivative (TOP-53) Against Lung Cancer and Lung Metastatic Cancer. Cancer Res. 1996; 56: 2809-2814.

[7] Xiao Z, Han S, Bastow K, Vance J, Sidwell R, Wang H, *et al.* Antitumor Agents. 234. Design Synthesis and Biological Evaluation of Novel 4β -[(4''-Benzamido)-Amino]-4'-O-Demethylepipodophyllotoxin Derivatives. J Med Chem. 2004; 47(21): 5140-5148.

[8] Huang T, Lee C, Chen L, Whan-Peng J, In Vitro Evaluation of GL33's Cancer Cell Killing and Apoptosis-Inducing Activity in Combination with other Chemotherapeutic Agents. Apoptosis. 2000; 5: 79-85.

[9] Abad A, López-Pérez J, del Olmo E, Garcia-Férnandez L, Francesch A, Andreu J, *et al.* Synthesis and antimitotic and tubulin interaction profiles of novel pinacol derivatives of podophyllotoxins. J Med Chem. 2012; 55(15): 6724-6737.

[10] Lassus A, Rosen B. Response of Solitary Psoriatic Plaques to Experimental Application of Podophyllotoxin. Dermatologica. 1986; 172: 319-322.

[11] Silverstein R, Webster F. Spectroscopic Identification of Organic Compounds. 6ta Ed. New Yor (USA): J. Wiley Publisher; 1998.