
Clúster de Cómputo “Enchufar y Listo”

“Plug-and-Play” Cluster Computing

Dean E. Dauger
Dauger Research, Inc.

http://daugerresearch.com/

Viktor K. Decyk
Department of Physics

University of California, Los Angeles
http://exodus.physics.ucla.edu/viktor/

Abstract

To achieve accessible computational power for our
research goals, we developed the tools to build
numerically-intensive parallel computing clusters on
the Macintosh platform. We find that the usability and
reliability of the technology is as important as its per-
formance. Our approach is designed to allow the user,
without expertise in the operating system, to most effi-
ciently develop and run parallel code, enabling the
most effective advancement of scientific research. In
this article we describe the design decisions we made
to accomplish these goals and introduce the latest ap-
plications of our approach. By “reinventing” the clus-
ter computer, we provide a unique solution designed to
maximize access ib i l i ty for users .
http://daugerresearch.com

1. Introduction

 Accessible computing power, as a goal, is the
main motivation for cluster computing. Some wish to
tap the proliferation of desktop computers, while oth-
ers seek clustering because they find access to large
supercomputing centers difficult or unattainable. Both
are led to ask how smaller machines can be combined
to provide sufficient access to computational power. In
this article, we describe how the design decisions
made for our approach to cluster computing best
achieves these goals for scientific users and, ulti-
mately, for the mainstream end user. To show the po-
tential of this clustering paradigm, we highlight some

of its newest applications of this alternative approach.

 One approach, introduced in the mid-1990’s, used
a parallel computing message passing library with the
Linux operating system and became known as
“Beowulf”-style cluster computing. [1] Today, the
Message-Passing Interface (MPI) [2] has become a
dominant industry standard [3], and many MPI im-
plementations are available under open source license.

 Beowulf, however, has taught us that the solution
must be productive and cost-effective by requiring
only a minimum of time and expertise to build and
operate the parallel computer. Specifically, our goal is
to minimize the time needed to assemble and run a
working cluster. The simplicity and straightforward-
ness of this solution is just as important as its process-
ing power because power provides nothing if it cannot
be used effectively. This solution would provide a bet-
ter total price to performance ratio and a higher com-
mitment to the original purpose of such systems: pro-
vide the user with large amounts of accessible comput-
ing power.

 Since 1998, we have been developing and using a
solution that meet those design criteria. Our solution
is based on the Macintosh Operating System using
Macintosh hardware; we call it a Mac cluster. [4] In
our ongoing effort to improve the user experience, we
continue to streamline the software and add numerous
new features, adapting to the latest changes in the plat-
form. With OS X, the latest, Unix-based version of the
Mac OS, [5] we are seeing the convergence of the best
of Unix with the best of the Mac. Also, we have re-
sponded to the recent adoption of Intel processors by

1

extending our technology to support mixed clusters of
Intel- and PowerPC-based Macs.

 We have extended the Macintosh’s famed ease-of-
use to parallel computing. In the following, we de-
scribe how a user can build an Mac cluster and dem-
onstrate how that user can operate it. We then de-
scribe technical details, as much as space allows, re-
garding important design choices we made to accom-
plish these design goals and the consequences of those
choices, emphasizing how our solution is different
from other cluster types. Part of our effort has been to
rethink and streamline cluster design, installation, and
operation. We believe these design principles have led
us to a cluster solution that maximizes the user’s ac-
cessibility to computational power. Finally, we show
the potential of our solution by introducing new appli-
cations of our cluster technology.

2. The User’s Cluster Experience

2.1. Building a Mac Cluster

 Streamlining cluster setup to the bare minimum,
the steps to building a Mac cluster have been distilled
to connecting the computers to the network, assigning
network names and addresses to the nodes, and
quickly installing the software. The following para-
graphs completely define the components and proce-
dures for setting up a Mac cluster:

 Building an Mac cluster begins by collecting the
hardware: Power Macs or Mac Pros, one Category 5
Ethernet cable with RJ-45 jacks per Mac, and an Eth-
ernet switch. Almost all the latest Mac models have
Gigabit Ethernet, so a 100BaseT switch or faster with
at least as many ports as there are Macs functions well.
For each Mac, one end of a cable plugs into the Ether-
net jack on the Mac and the other end to a port on the
switch.

 System software is a simple matter: Macs come
preinstalled with Mac OS X. Configuring the Macs
generally involves making sure each Mac has an work-
ing Internet or IP connection and a unique name,
specified in the Network and Sharing System Prefer-
ences.

 Finally, a software package called Pooch is used
to operate the cluster. A download version is available.
[6] Running the installer on a hard drive of each Mac
completes the parallel computer. Software installation

on a node takes only a few seconds, a brevity not
found in other cluster types.

2.2. Running a Mac Cluster

 Because the intention is that the cluster user will
spend most time interacting with the cluster perform-
ing such job launching activities, we have invested
considerable effort refining the design of this user in-
terface to minimize the time for the user to run a paral-
lel job.

 In our documentation, we recommend that users
first test their Mac cluster with a simple, reliable paral-
lel computing job. For the purpose of this initial test,
the Power Fractal app, a demonstration parallel appli-
cation, is available for free download. [6] This demon-
stration of high-performance computing also runs on a
single node.

 The user runs this application in parallel by select-
ing New Job… from the File menu of Pooch. This
action opens up a new Job Window. The user may drag
Power Fractal from the Finder to this Job Window,
depicted in Figure 1.

Figure 1. To set up a parallel computing job, the user
drags a parallel application, in this case the Power
Fractal, and drops it in the Job Window of Pooch.

Next, the user chooses nodes to run in parallel. By
default, Pooch selects the node where the job is being
specified. To add more, the user clicks on Select
Nodes…, which invokes a Network Scan Window,
shown in Figure 2.

2

Figure 2. Selecting nodes is performed using the Net-
work Scan Window, invoked by clicking on “Select
Nodes…” from the window in the previous figure.

Double-clicking on a node moves it to the node list of
the Job Window. If a machine running OS X has two
processors, Pooch can use them as if they were sepa-
rate nodes.

 Finally, the parallel job must be started by click-
ing on Launch Job. Upon completion of its computa-
tional task, the demo then calculates its achieved per-
formance, which should be significantly greater than
single-node performance.

 This initial test also trains the user to accomplish
the fundamental tasks required to run a parallel job.
We have distilled the operation into three fundamental
steps: 1. Selecting a executable; 2. Selecting computa-
tional resources; and 3. Combining these selections
through job initiation. We consider the streamlining of
this user interface to be important because submitting
jobs is a repetitive task that potentially can occupy
much of the user’s time because of the intended high
frequency of this task.

2.3. Debugging on a Mac Cluster

 So that the Plasma group’s physics researchers
can maximize their time studying physics, we have
added enhancements, beyond basic message-passing,
to the MPI implementation we call MacMPI that make
it easier for them to develop parallel programs.

 One of these is the monitoring of MPI messages,
controlled by a monitor flag in MacMPI, which can
log every message sent or received. In its default set-
ting, a small monitor window appears, shown in Fig-
ure 3. In this window, status lights indicate whether
the node whose screen is being examined is sending
and/or receiving messages from any other node. Green

indicates sending, red indicates receiving, and yellow
means both. Since messages normally are sent very
fast, these lights blink rapidly. However, if a deadlock
occurs, which is a common occurrence for beginning
programmers, the lights will stay lit. The moment such
a problem occurs, a particular color pattern is immedi-
ately visible to the user, who can then apply the new
information to debugging the code.

 The monitor window also shows a similarly color-
coded histogram of the size of messages being sent or
received. The purpose of this histogram is to draw the
user’s attention to the length of the messages the code
is sending. The two dials in MacMPI’s monitor win-
dow show the approximate percent of time spent in
communication and the average and instantaneous
speeds achieved during communication. While ap-
proximate, those indicators have been invaluable in
revealing problems in the code and the network.

Figure 3. The monitor window of MacMPI, which
keeps track of statistics about the execution of the run-

ning parallel application.

3. Design and Implementation

3.1. Division of API and Launching Utility

 A fundamental difference from most other cluster
types is the clear distinction and separation between
the code that performs the internode communications
for the job and the code that performs job initiation

3

and other cluster management. In most MPI imple-
mentations, such as mpich and LAM, these tasks are
merged in one package. Only recently have incarna-
tions emerged that identify distinctions between these
tasks, such as the new MPICH2 rewrite of mpich. [7]

 In the design of the Mac cluster, we made the re-
sponsibilities of the communications library distinct
and separate from the code that launches the jobs and
manages the cluster, a separation that has existed since
the Mac cluster’s inception in 1998. We call the for-
mer MacMPI, while the current incarnation of the lat-
ter is called Pooch.

 MacMPI, freely available from the AppleSeed site
at UCLA Physics, is Decyk’s 45 routine subset of MPI
implemented using the Mac OS networking APIs. It
exists in two major types: the first, MacMPI_X, uses
Apple’s latest Open Transport implementation of TCP/
IP available in both OS 9 and OS X while the second,
MacMPI_S, uses the Unix sockets implementation in
OS X. [8] Each has a corresponding “Universal Bi-
nary” derivative, MacMPI_XUB and MacMPI_SUB,
to support running parallel applications on Intel- and
PowerPC-based Macs simultaneously. Apple uses the
“Universal” moniker to identify compiled code that
runs natively on all current Mac processors. [9]
MacMPI’s performance results, comparable with the
performance of open-source MPIs, are detailed further
on our web site. [10]

 Pooch is a parallel computing and cluster man-
agement tool designed to provide users accessibility to
parallel computing. Pooch can organize the job’s files
into subdirectories on the other nodes and retrieve files
on those nodes containing output from completed jobs.
It can queue jobs and launch them only when certain
conditions have been met. It also has the ability to kill
running jobs, launching jobs, and queued jobs. It keeps
track of these jobs and reports their status in an appeal-
ing GUI. It can also take advantage of machines
where no user is logged in.

 Pooch supports the widest variety of parallel pro-
gramming environments, enabled by the convergence
of technologies in OS X: Universal, Carbon, Cocoa,
Mach-O, Unix shell scripts, or AppleScripts. [5] As of
this writing, Pooch supports five different Message-
Passing Interfaces (MPIs): MacMPI, mpich, MPI/Pro,
mpich-gm (for Myrinet hardware), and LAM/MPI.
[11] Because of OS X, MPIs of such varied histories
are all now supported in the one environment. We are
investigating further expansion of MPI support.

 Pooch Pro, in its 2004 debut, introduced
password-protected accounts with administrator and
user hierarchy to Mac clusters. This bifurcation of
Pooch identifies CPU time with particular users, mak-
ing it possible to apply CPU time quotas, by job or by
time period, to users’ computing jobs. These can be
used to regulate user access particular nodes CPU time
not used in one time period can also be “rolled over”
to the next, like cell phone services.

 By sending commands through interapplication
messages called AppleEvents, other applications can
directly control Pooch to perform automated Grid-like
behavior. The Fresnel Diffraction Explorer (FDE), an
optics parallel desktop application, can initiate its own
utilization of a local cluster via Pooch. While the pre-
sent incarnation of Globus [12] and related technolo-
gies combine resources on a supercomputer level, our
technology combines desktop machines. Unlike
Globus and Condor [13], these features are installed,
configured, and run using an accessible GUI. With
only a menu selection, desktop applications such as
FDE today can automatically take advantage of re-
sources elsewhere on the cluster. Such powerful yet
easy to use features are prerequisites for parallel com-
puting to become mainstream. We have leveraged
some of these features for new applications described
below.

3.2. No Modification to the Operating System

 Making no modifications to the operating system
allowed us to simplify much of our software design.
In our approach, we do not even add any runtime-
linked library on the system, much less the system-
level or even kernel-level modifications many cluster
designs make. We took this approach so that parallel
executables can run on any node regardless of such
modifications.

 Consequently, MacMPI is a source code library
that users integrate into their executable. MacMPI is a
wrapper library that assumes only the fundamental,
preinstalled operating system is present and no more.
MacMPI takes advantage of as much of the operating
system as possible to minimize its size and complex-
ity. We have utilized this library on hardware nor-
mally not designated for cluster operation and config-
ured in virtually every possible configuration.

 The operating system itself does not have cluster
services. We add as little as possible to the system by

4

adding only one additional piece of executable code,
Pooch, to run and operate the cluster. This approach
keeps installation time to a minimum, which helps
satisfy our design goals with regards to cluster set up.

 The design decision to stay above the operating
system level is a lesson learned from earlier desktop
computing. In the original Mac OS, extra tools nick-
named “INIT”s and “cdev”s, later known as “Exten-
sions” and “Control Panels”, respectively, inserted
code into the operating system or replaced pieces of
the operating system. Over the years, users would
experience bugs, crashes, or other unreliability be-
cause of conflicts between the OS and the extensions
or between extensions or later versions of the OS.
This led to a then-thriving segment of the industry
devoted to catching such conflicts. [14]

 It was later determined, and encouraged by Apple,
that the best way to add functionality to an operating
system was using the application layers only. Such
extensions and control panels were subsequently dis-
couraged, and finally made virtually impossible to
write in OS X. Likewise, our approach is to follow the
rules that apply to the typical desktop application: use
the documented, officially supported API and your
code will be robust and backwards- and forwards-
compatible.

3.3. Takes Advantage of a Consistently Sup-
ported API

 At UCLA Physics, we do not have the resources
to build or rebuild something as complex as an operat-
ing system or the APIs it provides to applications.
Therefore, we took advantage of APIs that were al-
ready present and officially supported in the operating
system.

 The nature of this support is two-fold. First, Ap-
ple promised to support the Carbon API as explicitly
documented, in these operating systems and all future
releases of OS X. Second, if there is an inconsistency
or other bug, Apple provides a mechanism called the
Apple Bug Reporter with which any user of their op-
erating system can report such issues with any sup-
ported release of their operating system or libraries.
[15] A well-reproduced problem, described and sub-
mitted there, has historically been fixed in a timely
manner. We are taking advantage of Apple’s commer-
cial, non-scientific motivation to provide a consistent,
reliable, well-behaving API, operating system, and

hardware. Our approach is to take advantage of such
long-term motivations.

3.4. No Static Cluster Data

 All Pooch operations exclusively use
dynamically-determined information. Pooch, there-
fore, does not require an administrator to maintain any
static data files about the cluster. On OS X 10.2 and
later, Pooch’s node discovery implementation uses
Service Location Protocol and Apple’s Bonjour (a.k.a.
ZeroConf) simultaneously. [16] These TCP/IP-based
discovery services provide Pooch with the information
needed by MacMPI to organize and set up the inter-
node connections for the parallel job.

 During the procedure of Section II B, above,
Pooch uses encrypted connections to determine up-to-
the-minute information about nodes, including their
availability and capability, making it possible for the
user to make decisions on which nodes to use and in
what order. Pooch then provides network information
to the MPI based on these decisions.

 No assumptions have been made about particular
hardware at particular addresses being available. By
relying on dynamically determined network informa-
tion, Pooch’s GUI (see Figure 2) transparently encour-
ages users to select hardware confirmed to be function-
ing and available for use.

 We use an important concept here. A static node
list could list nodes that are in fact non-functional, and
a problem is discovered only when a job fails, which
could at the outset be due to a variety of potential
problems in any node in the list. By making dynamic
discovery part of the node selection process, problem
nodes are already eliminated before the user makes a
decision. That design automatically eliminates a host
of potential sources of failure that the user might en-
counter.

 MacMPI assumes it is fed an arbitrary list of IP
addresses to begin its work. That design decision
makes it possible for Pooch to include nodes on almost
any subnet of the Internet. We have exercised that
capability many times, either initiating jobs on our
cluster from home, or even combining nodes at arbi-
trary distances. Pooch has even been used to combine
nodes at UCLA in Los Angeles, California, with ma-
chines in Munich, Germany, 10 000 km apart. Further
details are in the documentation available with the
distribution.

5

3.5. Minimum Assumptions about Configura-
tion

 Pooch makes as few assumptions as possible
about the cluster configuration. The configuration
requirements are that the node has a working network
connection with a unique IP address and a unique net-
work name. This configuration is considered minimal
in today’s personal computers, due to the ubiquity of
web browser use and file exchange via the network.
Again, our approach takes advantage of a preexisting
condition in the computer industry.

 The absence of further configuration details about
the cluster expresses how reliably it tolerates varia-
tions in configuration while interfacing and operating
with hardware and software. The hardware need not be
identical. The network interfaces can vary (100BaseT,
10BaseT, Gigabit, IrDA (infrared), Airport (wireless),
FireWire (a. k. a. IEEE 1394)). Computing hardware
can be different (Intel Cores of any speed, PowerPC
G5s of any speed, multiple processors, desktops, port-
ables, rack-mount Xserves). When we demonstrate
the technology to others, we often ask the audience to
volunteer their computers to add to the Mac cluster.
The cluster runs despite the wide configuration variety
of these volunteer machines. This design has great
implications for the mainstream because end users do
not wish to be concerned with such details.

 The inexpensive and powerful cluster of Power
Mac G4s and G5s has become a valuable addition to
the UCLA Plasma Physics group. The solution at
UCLA Physics is fairly unique in that half of the nodes
are not dedicated for parallel computing. We purchase
high-end Macs and devote them for computation while
reassigning the older, slower Macs for individual
(desktop) use and data storage. Thus, we are reusing
the Macs in the cluster, making for a very cost-
effective solution to satisfy both our parallel comput-
ing and desktop computing needs. The Mac cluster is
unique in this regard, made possible by how tolerant
the software is of variations in configuration. Because
our software is now “Universal”, we have already
paved the way to adapt easily to mixing recently intro-
duced Intel-based Mac Pros with our PowerPC hard-
ware.

 In addition, the flexibility of the Mac cluster al-
lows us to redirect computational resources very
quickly within the group. That ability is useful for

unfunded research or exploratory projects, so we can
better prepare for an official proposal later. If one in-
vestigator needs to meet a short deadline, that person
can ask the research group, borrow their desktop
Macs, and combine them with the dedicated Macs for
one large job or many smaller ones.

3.6. Minimum Centralization

 A common strategy used to increase the perform-
ance of parallel codes is to eliminate bottlenecks. We
have extended that concept to the Mac cluster by
minimizing centralization such as single points of fail-
ure or other bottlenecks. This decision leads to certain
design consequences.

 Although many Linux clusters assume some sort
of shared storage (NFS, AFS, etc.) be fully configured
and operational in order to distribute executables or
data files, no shared storage is needed for the Mac
cluster because it is a potential single point of failure.
Also, in a Mac cluster, there is no “head node”, at least
not in the sense of the “head node” of the typical
Linux-based cluster. There is no permanent control-
ling unit or units. The traditional concept of “server”
and “client” is not used.

 Rather, we chose a decentralized approach. Op-
erations, whenever possible, are performed much more
like “peer to peer”. All nodes can act as “temporary
head nodes”, a transient state occurring only during
the brief seconds of the launch process. If a user finds
that a node is down, that user can simply move on to
another node for use in the next parallel job. Node
identification by number is therefore a temporary state,
enabling users to flexibly chose how to combine nodes
for cluster computation from job to job.

4. Plasma Physics, Mathematica, and More

 The PIC codes at the UCLA Plasma Physics
Group are used in a number of High-Performance
Computing projects, such as modeling fusion reactors
[17] and advanced accelerators [18]. For those pro-
jects massively parallel computers are required, but the
group has found it very convenient to perform research
projects on more modest and user-friendly parallel
machines such the Macintosh clusters.

 Simplifying the problem of building, operating,
and maintaining a parallel cluster allows our group to
use its cluster to focus on physics research. The Mac

6

cluster at UCLA Physics is primarily used for plasma
physics projects. The UCLA Parallel PIC Framework
(UPIC) is a set of trusted components written in
object-oriented Fortran90 that supports multiple
plasma PIC codes. [19] Developed on the Mac cluster
at UCLA Physics but scalable to the largest supercom-
puters, this framework supports multiple numerical
methods, different physics approximations (both in 2D
and 3D), and various numerical optimizations for dif-
ferent plasma conditions and scenarios. QuickPIC, a
quasi-static code for studying plasma-based accelera-
tors, utilizes coupled 3D and 2D PIC models imple-
mented using UPIC. [20] 2D and 3D implementations
of quantum PIC code, which uses a semiclassical ap-
proximation of Feynman path integrals to solve multi-
particle quantum problems, also uses UPIC on the
Mac cluster. [21] Performance of these codes on
Power Mac G5s in comparison is on our web site. [10]
Preliminary tests using Macs with the Intel Core show
performance per “core” to be at least that of the G5.
We will able to say more as we gain experience with
the latest Mac Pro systems.

 Our Mac cluster has been applied to numerous
scientific applications, most thus far written in Fortran
or C to MPI calls, and some are listed on our web site.
[22] However, our intention is not to stop there. In
partnership with Advanced Cluster Systems, [23] we
announced (August 2006) running Wolfram Re-
search’s Mathematica [24] in parallel on a Mac cluster.
[25] This “shrink-wrapped” commercial application
was not designed to operate in parallel, so we created a
way to launch and coordinate multiple Mathematica
kernels on a cluster and added MPI calls to the
Mathematica runtime environment to support node-to-
node and collective messaging just like on massively
parallel supercomputers. Because of certain peculiari-
ties in the Mathematica language, like underscores
being not allowed in function names, some adaptations
and reinterpretations were required, but the principle
ideas of the distributed-memory message-passing
paradigm for parallel computing are now expressed in
Mathematica. Using the AppleEvent interface de-
scribed above, our toolkit taps the Mac cluster via
Pooch, locates and launches licensed local Mathe-
matica kernels, and then loads and configures the MPI
libraries in the Mathematica runtime environment.
The potential of combining the analytical power of
Mathematica with the power of cluster computing is
unprecedented. [26]

 We believe the potential impact of combining
Mac clustering with commercial technologies is stag-
gering. Yet another part of our first step to make this
vision real is to parallelize QuickTime compression
using Mac clusters as well. [27] We just released
(January 2007) version 1.0 of a QuickTime plug-in
that intercepts data from commercial video editing
applications, like Apple’s iMovie, Final Cut Express,
Final Cut Pro, and Motion, and redistributes the raw
data for compression in parallel on a Mac cluster, then
gathers and reorganizes the compressed data into
QuickTime movies as output, shown in Figure 4. With
the latest video codecs like H.264 taking many hours
to compress each hour of source video, the clock time
of such tasks can be substantial. This QuickTime plug-
in automatically accesses the Mac cluster via Pooch as
described for FDE above and performs the task faster,
reducing the clock time of such problems significantly
and benefiting the end user. Making high-performance
computing accessible to users via major commercial
applications is part of our vision for plug-and-play
cluster computing.

Figure 4. MacMPI being used while compressing
video data from iMovie, a commercial video editing

application, on a Mac cluster.

5. Conclusion

 Our goal is to maximize the benefits of parallel
computing for the end user. By assuming only the
minimum configuration of the hardware and operating
system, the Mac cluster design has the potential to
provide an significant advantage to cluster users. The
simplicity of using Mac cluster technology makes it a
highly effective solution for all but the largest calcula-
tions. We are continuing to improve upon our work for
the sake of those users and respond to their feedback.

7

 Our approach is unique because, while other solu-
tions seem to direct little, if any, attention to usability,
tolerance to variations in configuration, and reliability
outside tightly-controlled conditions, we find such
issues to be as important as raw performance. We
believe the ultimate vision of parallel computing is
(rather than merely to build raw processor power) to
make the technology is so reliable and trivial to install,
configure, and use that the user will barely be aware
that computations are occurring in parallel. This arti-
cle presents our progress in building and applying the
“plug-and-play” technology to make that vision come
true.

 We organize problems with using parallel com-
puters into two categories: 1. Building, operating,
managing, and maintaining such a machine; and 2.
Determining how best to solve an application on that
machine. Above we describe how our work solves the
former so that users can maximize their energy on the
latter. Mac clusters’ feature set is on par with other
cluster types and is expanding to grid-like and super-
computing features. However, unlike other ap-
proaches, the Mac cluster solution makes the problem
of building and operating a parallel computer easy and
therefore enables the user to most efficiently write,
debug, and run parallel codes. Because of their ability
to make computational power accessible, Macintosh
clusters are uniquely capable of maximizing the im-
pact of parallel computing for scientific and main-
stream users.

6. Acknowledgments

 Many people have provided us useful advice over
the last few years. We thank J. Manuel Urrutia for
translating the abstract. We acknowledge help given
by Bedros Afeyan from Polymath Research, Inc., Ri-
cardo Fonseca from IST, Lisbon, Portugal, Frank
Tsung and John Tonge from UCLA, and the Applied
Cluster Computing Group at NASA’s Jet Propulsion
Laboratory.

7. References

[1] T. L. Sterling, J. Salmon, D. J. Becker, and D. F. Sa-
varese, How to Build a Beowulf, [MIT Press, Cambridge,
MA, USA, 1999].
[2] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J.
Dongarra, MPI: The Complete Reference [MIT Press, Cam-

bridge, MA, 1996]; William Gropp, Ewing Lush, and An-
thony Skjellum, Using MPI: Portable Parallel Programming
with the Message-Passing Interface [MIT Press, Cambridge,
MA, 1994].
[3] Most major supercomputing centers only use MPI for
distributed-memory parallel computing. The absence of
other message-passing schemes on new hardware is evident
at NERSC: http://hpcf.nersc.gov/software/libs/ and at
NPACI: http://www.npaci.edu/BlueHorizon/guide/ref.html
[4] V. K. Decyk, D. Dauger, and P. Kokelaar, “How to Build
An AppleSeed: A Parallel Macintosh Cluster for Numeri-
cally Intensive Computing,” Physica Scripta T84, 85, 2000.
[5] http://www.apple.com/macosx/
[6] http://daugerresearch.com/pooch/
[7] http://www-unix.mcs.anl.gov/mpi/mpich2/
[8] http://developer.apple.com/documentation/CoreFoundati
on/Networking-date.html
[9] http://www.apple.com/universal/
[10] See http://exodus.physics.ucla.edu/appleseed/
[11] See links at: http://daugerresearch.com/pooch/mpi.html
[12] http://www.globus.org/
[13] http://www.cs.wisc.edu/condor/
[14] A leading software product of that industry was “Con-
flict Catcher” published by Casady & Greene:
http://www.casadyg.com/. That company closed in 2003.
[15] http://bugreport.apple.com/
[16] http://developer.apple.com/bonjour/ and
http://www.zeroconf.org/
[17] R.D. Sydora, V.K. Decyk, and J.M. Dawson,
“Fluctuation-Induced Heat Transport Results from a Large
Global 3D Toroidal Particle Simulation Model,” Plasma
Physics and Controlled Fusion, vol. 38, no. 12A, 1996, pp.
A281–A294.
[18] K.-C. Tzeng, W.B. Mori, and T. Katsouleas, “Electron
Beam Characteristics from Laser-Driven Wave Breaking,”
Physical Rev. Letters, vol. 79, no. 26, 1997, pp. 5258–5261.
[19] V. K. Decyk and C. D. Norton, “UCLA Parallel PIC
Framework”, Computer Physics Communications 164
(2004) 80-85.
[20] C. K. Huang, V. K. Decyk, C. Ren, M. Zhou, W. Lu, W.
B. Mori, J. H. Cooley, T. M Antonsen Jr., T. Katsouleas,
“QuickPIC: A highly efficient particle-in-cell code for mod-
eling wakefield acceleration in plasmas”, J. Comp. Phys.
Volume 217, Issue 2, 20 September 2006, 658-679.
[21] D. E. Dauger, V. K. Decyk, and J. M. Dawson, “Using
semiclassical trajectories for the time-evolution of interact-
ing quantum-mechanical systems”, Journal of Computational
Physics 209 (2005) 559-581.
[22] http://daugerresearch.com/pooch/user.shtml
[23] http://acs-grid.com/
[24] http://wolfram.com/
[25] http://daugerresearch.com/pr/poochmpimath.shtml
[26] http://daugerresearch.com/pooch/mathematica/
[27] http://daugerresearch.com/pooch/quicktime/

8

