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Abstract

To achieve accessible computational power for our 
research goals, we developed the tools to build 
numerically-intensive parallel computing clusters on 
the Macintosh platform. We find that the usability and 
reliability of the technology is as important as its per-
formance.  Our approach is designed to allow the user, 
without expertise in the operating system, to most effi-
ciently develop and run parallel code, enabling the 
most effective advancement of scientific research. In 
this article we describe the design decisions we made 
to accomplish these goals and introduce the latest ap-
plications of our approach.  By “reinventing” the clus-
ter computer, we provide a unique solution designed to 
maximize access ib i l i ty for users .  
http://daugerresearch.com

1. Introduction


 Accessible computing power, as a goal, is the 
main motivation for cluster computing. Some wish to 
tap the proliferation of desktop computers, while oth-
ers seek clustering because they find access to large 
supercomputing centers difficult or unattainable. Both 
are led to ask how smaller machines can be combined 
to provide sufficient access to computational power. In 
this article, we describe how the design decisions 
made for our approach to cluster computing best 
achieves these goals for scientific users and, ulti-
mately, for the mainstream end user.  To show the po-
tential of this clustering paradigm, we highlight some 

of its newest applications of this alternative approach.

 One approach, introduced in the mid-1990’s, used 
a parallel computing message passing library with the 
Linux operating system and became known as 
“Beowulf”-style cluster computing. [1]  Today, the 
Message-Passing Interface (MPI) [2] has become a 
dominant industry standard [3], and many MPI im-
plementations are available under open source license. 

 Beowulf, however, has taught us that the solution 
must be productive and cost-effective by requiring 
only a minimum of time and expertise to build and 
operate the parallel computer. Specifically, our goal is 
to minimize the time needed to assemble and run a 
working cluster.  The simplicity and straightforward-
ness of this solution is just as important as its process-
ing power because power provides nothing if it cannot 
be used effectively. This solution would provide a bet-
ter total price to performance ratio and a higher com-
mitment to the original purpose of such systems: pro-
vide the user with large amounts of accessible comput-
ing power. 

 Since 1998, we have been developing and using a 
solution that meet those design criteria.  Our solution 
is based on the Macintosh Operating System using 
Macintosh hardware; we call it a Mac cluster. [4]   In 
our ongoing effort to improve the user experience, we 
continue to streamline the software and add numerous 
new features, adapting to the latest changes in the plat-
form. With OS X, the latest, Unix-based version of the 
Mac OS, [5] we are seeing the convergence of the best 
of Unix with the best of the Mac.  Also, we have re-
sponded to the recent adoption of Intel processors by 
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extending our technology to support mixed clusters of 
Intel- and PowerPC-based Macs.

 We have extended the Macintosh’s famed ease-of-
use to parallel computing.  In the following, we de-
scribe how a user can build an Mac cluster and dem-
onstrate how that user can operate it.   We then de-
scribe technical details, as much as space allows, re-
garding important design choices we made to accom-
plish these design goals and the consequences of those 
choices, emphasizing how our solution is different 
from other cluster types.  Part of our effort has been to 
rethink and streamline cluster design, installation, and 
operation.  We believe these design principles have led 
us to a cluster solution that maximizes the user’s ac-
cessibility to computational power.  Finally, we show 
the potential of our solution by introducing new appli-
cations of our cluster technology. 

2. The User’s Cluster Experience

2.1. Building a Mac Cluster


 Streamlining cluster setup to the bare minimum, 
the steps to building a Mac cluster have been distilled 
to connecting the computers to the network, assigning 
network names and addresses to the nodes, and 
quickly installing the software.  The following para-
graphs completely define the components and proce-
dures for setting up a Mac cluster:

 Building an Mac cluster begins by collecting the 
hardware: Power Macs or Mac Pros, one Category 5 
Ethernet cable with RJ-45 jacks per Mac, and an Eth-
ernet switch. Almost all the latest Mac models have 
Gigabit Ethernet, so a 100BaseT switch or faster with 
at least as many ports as there are Macs functions well. 
For each Mac, one end of a cable plugs into the Ether-
net jack on the Mac and the other end to a port on the 
switch.  

 System software is a simple matter: Macs come 
preinstalled with Mac OS X. Configuring the Macs 
generally involves making sure each Mac has an work-
ing Internet or IP connection and a unique name, 
specified in the Network and Sharing System Prefer-
ences. 

 Finally, a software package called Pooch is used 
to operate the cluster. A download version is available. 
[6] Running the installer on a hard drive of each Mac 
completes the parallel computer.  Software installation 

on a node takes only a few seconds, a brevity not 
found in other cluster types.  

2.2. Running a Mac Cluster


 Because the intention is that the cluster user will 
spend most time interacting with the cluster perform-
ing such job launching activities, we have invested 
considerable effort refining the design of this user in-
terface to minimize the time for the user to run a paral-
lel job.  

 In our documentation, we recommend that users 
first test their Mac cluster with a simple, reliable paral-
lel computing job.  For the purpose of this initial test, 
the Power Fractal app, a demonstration parallel appli-
cation, is available for free download. [6]  This demon-
stration of high-performance computing also runs on a 
single node. 

 The user runs this application in parallel by select-
ing New Job… from the File menu of Pooch. This 
action opens up a new Job Window. The user may drag 
Power Fractal from the Finder to this Job Window, 
depicted in Figure 1. 

Figure 1. To set up a parallel computing job, the user 
drags a parallel application, in this case the Power 
Fractal, and drops it in the Job Window of Pooch. 

Next, the user chooses nodes to run in parallel. By 
default, Pooch selects the node where the job is being 
specified. To add more, the user clicks on Select 
Nodes…, which invokes a Network Scan Window, 
shown in Figure 2. 
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Figure 2. Selecting nodes is performed using the Net-
work Scan Window, invoked by clicking on “Select 
Nodes…” from the window in the previous figure.

Double-clicking on a node moves it to the node list of 
the Job Window. If a machine running OS X has two 
processors, Pooch can use them as if they were sepa-
rate nodes.  

 Finally, the parallel job must be started by click-
ing on Launch Job. Upon completion of its computa-
tional task, the demo then calculates its achieved per-
formance, which should be significantly greater than 
single-node performance. 

 This initial test also trains the user to accomplish 
the fundamental tasks required to run a parallel job.  
We have distilled the operation into three fundamental 
steps: 1. Selecting a executable; 2. Selecting computa-
tional resources; and 3. Combining these selections 
through job initiation.  We consider the streamlining of 
this user interface to be important because submitting 
jobs is a repetitive task that potentially can occupy 
much of the user’s time because of the intended high 
frequency of this task.  

2.3. Debugging on a Mac Cluster


 So that the Plasma group’s physics researchers 
can maximize their time studying physics, we have 
added enhancements, beyond basic message-passing, 
to the MPI implementation we call MacMPI that make 
it easier for them to develop parallel programs.  

 One of these is the monitoring of MPI messages, 
controlled by a monitor flag in MacMPI, which can 
log every message sent or received. In its default set-
ting, a small monitor window appears, shown in Fig-
ure 3. In this window, status lights indicate whether 
the node whose screen is being examined is sending 
and/or receiving messages from any other node. Green 

indicates sending, red indicates receiving, and yellow 
means both.  Since messages normally are sent very 
fast, these lights blink rapidly. However, if a deadlock 
occurs, which is a common occurrence for beginning 
programmers, the lights will stay lit. The moment such 
a problem occurs, a particular color pattern is immedi-
ately visible to the user, who can then apply the new 
information to debugging the code. 

 The monitor window also shows a similarly color-
coded histogram of the size of messages being sent or 
received. The purpose of this histogram is to draw the 
user’s attention to the length of the messages the code 
is sending.  The two dials in MacMPI’s monitor win-
dow show the approximate percent of time spent in 
communication  and the average and instantaneous 
speeds achieved during communication. While ap-
proximate, those indicators have been invaluable in 
revealing problems in the code and the network. 

Figure 3. The monitor window of MacMPI, which 
keeps track of statistics about the execution of the run-

ning parallel application. 

3. Design and Implementation 

3.1. Division of API and Launching Utility


 A fundamental difference from most other cluster 
types is the clear distinction and separation between 
the code that performs the internode communications 
for the job and the code that performs job initiation 
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and other cluster management.  In most MPI imple-
mentations, such as mpich and LAM, these tasks are 
merged in one package.  Only recently have incarna-
tions emerged that identify distinctions between these 
tasks, such as the new MPICH2 rewrite of mpich. [7] 

 In the design of the Mac cluster, we made the re-
sponsibilities of the communications library distinct 
and separate from the code that launches the jobs and 
manages the cluster, a separation that has existed since 
the Mac cluster’s inception in 1998.  We call the for-
mer MacMPI, while the current incarnation of the lat-
ter is called Pooch.

 MacMPI, freely available from the AppleSeed site 
at UCLA Physics, is Decyk’s 45 routine subset of MPI 
implemented using the Mac OS networking APIs. It 
exists in two major types: the first, MacMPI_X, uses 
Apple’s latest Open Transport implementation of TCP/
IP available in both OS 9 and OS X while the second, 
MacMPI_S, uses the Unix sockets implementation in 
OS X. [8]  Each has a corresponding “Universal Bi-
nary”  derivative, MacMPI_XUB and MacMPI_SUB, 
to support running parallel applications on Intel- and 
PowerPC-based Macs simultaneously. Apple uses the 
“Universal”  moniker to identify compiled code that 
runs natively on all current Mac processors. [9] 
MacMPI’s performance results, comparable with the 
performance of open-source MPIs, are detailed further 
on our web site. [10]  

 Pooch is a parallel computing and cluster man-
agement tool designed to provide users accessibility to 
parallel computing. Pooch can organize the job’s files 
into subdirectories on the other nodes and retrieve files 
on those nodes containing output from completed jobs. 
It can queue jobs and launch them only when certain 
conditions have been met. It also has the ability to kill 
running jobs, launching jobs, and queued jobs. It keeps 
track of these jobs and reports their status in an appeal-
ing GUI.  It can also take advantage of machines 
where no user is logged in.  

 Pooch supports the widest variety of parallel pro-
gramming environments, enabled by the convergence 
of technologies in OS X: Universal, Carbon, Cocoa, 
Mach-O, Unix shell scripts, or AppleScripts. [5] As of 
this writing, Pooch supports five different Message-
Passing Interfaces (MPIs): MacMPI, mpich, MPI/Pro, 
mpich-gm (for Myrinet hardware), and LAM/MPI. 
[11] Because of OS X, MPIs of such varied histories 
are all now supported in the one environment.  We are 
investigating further expansion of MPI support. 


 Pooch Pro, in its 2004 debut, introduced 
password-protected accounts with administrator and 
user hierarchy to Mac clusters. This bifurcation of 
Pooch identifies CPU time with particular users, mak-
ing it possible to  apply CPU time quotas, by job or by 
time period, to users’  computing jobs.  These can be 
used to regulate user access particular nodes CPU time 
not used in one time period can also be “rolled over” 
to the next, like cell phone services. 

 By sending commands through interapplication 
messages called AppleEvents, other applications can 
directly control Pooch to perform automated Grid-like 
behavior.  The Fresnel Diffraction Explorer (FDE), an 
optics parallel desktop application, can initiate its own 
utilization of a local cluster via Pooch.  While the pre-
sent  incarnation of Globus [12] and related technolo-
gies combine resources on a supercomputer level, our 
technology combines desktop machines.  Unlike 
Globus and Condor [13], these features are installed, 
configured, and run using an accessible GUI.  With 
only a menu selection, desktop applications such as 
FDE today can automatically take advantage of re-
sources elsewhere on the cluster.  Such powerful yet 
easy to use features are prerequisites for parallel com-
puting to become mainstream.  We have leveraged 
some of these features for new applications described 
below. 

3.2. No Modification to the Operating System


 Making no modifications to the operating system 
allowed us to simplify much of our software design.  
In our approach, we do not even add any runtime-
linked library on the system, much less the system-
level or even kernel-level modifications many cluster 
designs make.  We took this approach so that parallel 
executables can run on any node regardless of such 
modifications. 

 Consequently, MacMPI is a source code library 
that users integrate into their executable.  MacMPI is a 
wrapper library that assumes only the fundamental, 
preinstalled operating system is present and no more.  
MacMPI takes advantage of as much of the operating 
system as possible to minimize its size and complex-
ity.  We have utilized this library on hardware nor-
mally not designated for cluster operation and config-
ured in virtually every possible configuration.  

 The operating system itself does not have cluster 
services.  We add as little as possible to the system by 
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adding only one additional piece of executable code, 
Pooch, to run and operate the cluster.  This approach 
keeps installation time to a minimum, which helps 
satisfy our design goals with regards to cluster set up.  

 The design decision to stay above the operating 
system level is a lesson learned from earlier desktop 
computing.  In the original Mac OS, extra tools nick-
named “INIT”s and “cdev”s, later known as “Exten-
sions”  and “Control Panels”, respectively, inserted 
code into the operating system or replaced pieces of 
the operating system.  Over the years, users would 
experience bugs, crashes, or other unreliability be-
cause of conflicts between the OS and the extensions 
or between extensions or later versions of the OS.  
This led to a then-thriving segment of the industry 
devoted to catching such conflicts.   [14]

 It was later determined, and encouraged by Apple, 
that the best way to add functionality to an operating 
system was using the application layers only.  Such 
extensions and control panels were subsequently dis-
couraged, and finally made virtually impossible to 
write in OS X.  Likewise, our approach is to follow the 
rules that apply to the typical desktop application: use 
the documented, officially supported API and your 
code will be robust and backwards- and forwards-
compatible.  

3.3. Takes Advantage of a Consistently Sup-
ported API


 At UCLA Physics, we do not have the resources 
to build or rebuild something as complex as an operat-
ing system or the APIs it provides to applications.  
Therefore, we took advantage of APIs that were al-
ready present and officially supported in the operating 
system.  

 The nature of this support is two-fold.  First, Ap-
ple promised to support the Carbon API as explicitly 
documented, in these operating systems and all future 
releases of OS X.  Second, if there is an inconsistency 
or other bug, Apple provides a mechanism called the 
Apple Bug Reporter with which any user of their op-
erating system can report such issues with any sup-
ported release of their operating system or libraries. 
[15]  A well-reproduced problem, described and sub-
mitted there, has historically been fixed in a timely 
manner.  We are taking advantage of Apple’s commer-
cial, non-scientific motivation to provide a consistent, 
reliable, well-behaving API, operating system, and 

hardware.  Our approach is to take advantage of such 
long-term motivations.   

3.4. No Static Cluster Data


 All Pooch operations exclusively use 
dynamically-determined information.  Pooch, there-
fore, does not require an administrator to maintain any 
static data files about the cluster.  On OS X 10.2 and 
later, Pooch’s node discovery implementation uses 
Service Location Protocol and Apple’s Bonjour (a.k.a. 
ZeroConf) simultaneously. [16] These TCP/IP-based 
discovery services provide Pooch with the information 
needed by MacMPI to organize and set up the inter-
node connections for the parallel job.  

 During the procedure of Section II B, above, 
Pooch uses encrypted connections to determine up-to-
the-minute information about nodes, including their 
availability and capability, making it possible for the 
user to make decisions on which nodes to use and in 
what order.  Pooch then provides network information 
to the MPI based on these decisions.  

 No assumptions have been made about particular 
hardware at particular addresses being available.  By 
relying on dynamically determined network informa-
tion, Pooch’s GUI (see Figure 2) transparently encour-
ages users to select hardware confirmed to be function-
ing and available for use.  

 We use an important concept here.  A static node 
list could list nodes that are in fact non-functional, and 
a problem is discovered only when a job fails, which 
could at the outset be due to a variety of potential 
problems in any node in the list.  By making dynamic 
discovery part of the node selection process, problem 
nodes are already eliminated before the user makes a 
decision.  That design automatically eliminates a host 
of potential sources of failure that the user might en-
counter.  

 MacMPI assumes it is fed an arbitrary list of IP 
addresses to begin its work.  That design decision 
makes it possible for Pooch to include nodes on almost 
any subnet of the Internet.  We have exercised that 
capability many times, either initiating jobs on our 
cluster from home, or even combining nodes at arbi-
trary distances.  Pooch has even been used to combine 
nodes at UCLA in Los Angeles, California, with ma-
chines in Munich, Germany, 10 000 km apart.  Further 
details are in the documentation available with the 
distribution.  
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3.5. Minimum Assumptions about Configura-
tion


 Pooch makes as few assumptions as possible 
about the cluster configuration.  The configuration 
requirements are that the node has a working network 
connection with a unique IP address and a unique net-
work name.  This configuration is considered minimal 
in today’s personal computers, due to the ubiquity of 
web browser use and file exchange via the network.  
Again, our approach takes advantage of a preexisting 
condition in the computer industry.  
 
 The absence of further configuration details about 
the cluster expresses how reliably it tolerates varia-
tions in configuration while interfacing and operating 
with hardware and software. The hardware need not be 
identical. The network interfaces can vary (100BaseT, 
10BaseT, Gigabit, IrDA (infrared), Airport (wireless), 
FireWire (a. k. a. IEEE 1394)). Computing hardware 
can be different (Intel Cores of any speed, PowerPC 
G5s of any speed, multiple processors, desktops, port-
ables, rack-mount Xserves).  When we demonstrate 
the technology to others, we often ask the audience to 
volunteer their computers to add to the Mac cluster.  
The cluster runs despite the wide configuration variety 
of these volunteer machines.  This design has great 
implications for the mainstream because end users do 
not wish to be concerned with such details. 

 The inexpensive and powerful cluster of Power 
Mac G4s and G5s has become a valuable addition to 
the UCLA Plasma Physics group. The solution at 
UCLA Physics is fairly unique in that half of the nodes 
are not dedicated for parallel computing. We purchase 
high-end Macs and devote them for computation while 
reassigning the older, slower Macs for individual 
(desktop) use and data storage. Thus, we are reusing 
the Macs in the cluster, making for a very cost-
effective solution to satisfy both our parallel comput-
ing and desktop computing needs. The Mac cluster is 
unique in this regard, made possible by how tolerant 
the software is of variations in configuration. Because 
our software is now “Universal”, we have already 
paved the way to adapt easily to mixing recently intro-
duced Intel-based Mac Pros with our PowerPC hard-
ware. 

 In addition, the flexibility of the Mac cluster al-
lows us to redirect computational resources very 
quickly within the group. That ability is useful for 

unfunded research or exploratory projects, so we can 
better prepare for an official proposal later. If one in-
vestigator needs to meet a short deadline, that person 
can ask the research group, borrow their desktop 
Macs, and combine them with the dedicated Macs for 
one large job or many smaller ones.  

3.6. Minimum Centralization


 A common strategy used to increase the perform-
ance of parallel codes is to eliminate bottlenecks.  We 
have extended that concept to the Mac cluster by 
minimizing centralization such as single points of fail-
ure or other bottlenecks. This decision leads to certain 
design consequences.  

 Although many Linux clusters assume some sort 
of shared storage (NFS, AFS, etc.) be fully configured 
and operational in order to distribute executables or 
data files, no shared storage is needed for the Mac 
cluster because it is a potential single point of failure.  
Also, in a Mac cluster, there is no “head node”, at least 
not in the sense of the “head node”  of the typical 
Linux-based cluster.  There is no permanent control-
ling unit or units.  The traditional concept of “server” 
and “client” is not used.  

 Rather, we chose a decentralized approach.  Op-
erations, whenever possible, are performed much more 
like “peer to peer”.  All nodes can act as “temporary 
head nodes”, a transient state occurring only during 
the brief seconds of the launch process.  If a user finds 
that a node is down, that user can simply move on to 
another node for use in the next parallel job.   Node 
identification by number is therefore a temporary state, 
enabling users to flexibly chose how to combine nodes 
for cluster computation from job to job.  

4. Plasma Physics, Mathematica, and More


 The PIC codes at the UCLA Plasma Physics 
Group are used in a number of High-Performance 
Computing projects, such as modeling fusion reactors 
[17] and advanced accelerators [18].  For those pro-
jects massively parallel computers are required, but the 
group has found it very convenient to perform research 
projects on more modest and user-friendly parallel 
machines such the Macintosh clusters.  

 Simplifying the problem of building, operating, 
and maintaining a parallel cluster allows our group to 
use its cluster to focus on physics research. The Mac 
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cluster at UCLA Physics is primarily used for plasma 
physics projects.  The UCLA Parallel PIC Framework 
(UPIC) is a set of trusted components written in 
object-oriented Fortran90 that supports multiple 
plasma PIC codes. [19]  Developed on the Mac cluster 
at UCLA Physics but scalable to the largest supercom-
puters, this framework supports multiple numerical 
methods, different physics approximations (both in 2D 
and 3D), and various numerical optimizations for dif-
ferent plasma conditions and scenarios.  QuickPIC, a 
quasi-static code for studying plasma-based accelera-
tors, utilizes coupled 3D and 2D PIC models imple-
mented using UPIC. [20] 2D and 3D implementations 
of quantum PIC code, which uses a semiclassical ap-
proximation of Feynman path integrals to solve multi-
particle quantum problems, also uses UPIC on the 
Mac cluster. [21]    Performance of these codes on 
Power Mac G5s in comparison is on our web site. [10] 
Preliminary tests using Macs with the Intel Core show 
performance per “core”  to be at least that of the G5. 
We will able to say more as we gain experience with 
the latest Mac Pro systems.  

  Our Mac cluster has been applied to numerous 
scientific applications, most thus far written in Fortran 
or C to MPI calls, and some are listed on our web site. 
[22]  However, our intention is not to stop there.  In 
partnership with Advanced Cluster Systems, [23] we 
announced (August 2006) running Wolfram Re-
search’s Mathematica [24] in parallel on a Mac cluster. 
[25] This “shrink-wrapped”  commercial application 
was not designed to operate in parallel, so we created a 
way to launch and coordinate multiple Mathematica 
kernels on a cluster and added MPI calls to the 
Mathematica runtime environment to support node-to-
node and collective messaging just like on massively 
parallel supercomputers.  Because of certain peculiari-
ties in the Mathematica language, like underscores 
being not allowed in function names, some adaptations 
and reinterpretations were required, but the principle 
ideas of the distributed-memory message-passing 
paradigm for parallel computing are now expressed in 
Mathematica.  Using the AppleEvent interface de-
scribed above, our toolkit taps the Mac cluster via 
Pooch, locates and launches licensed local Mathe-
matica kernels, and then loads and configures the MPI 
libraries in the Mathematica runtime environment.  
The potential of combining the analytical power of 
Mathematica with the power of cluster computing is 
unprecedented. [26] 


 We believe the potential impact of combining 
Mac clustering with commercial technologies is stag-
gering.  Yet another part of our first step to make this 
vision real is to parallelize QuickTime compression 
using Mac clusters as well. [27] We just released 
(January 2007) version 1.0 of a QuickTime plug-in 
that intercepts data from commercial video editing 
applications, like Apple’s iMovie, Final Cut Express, 
Final Cut Pro, and Motion, and redistributes the raw 
data for compression in parallel on a Mac cluster, then 
gathers and reorganizes the compressed data into 
QuickTime movies as output, shown in Figure 4.  With 
the latest video codecs like H.264 taking many hours 
to compress each hour of source video, the clock time 
of such tasks can be substantial. This QuickTime plug-
in automatically accesses the Mac cluster via Pooch as 
described for FDE above and performs the task faster, 
reducing the clock time of such problems significantly 
and benefiting the end user.  Making high-performance 
computing accessible to users via major commercial 
applications is part of our vision for plug-and-play 
cluster computing. 

Figure 4.  MacMPI being used while compressing 
video data from iMovie, a commercial video editing 

application, on a Mac cluster.

5. Conclusion


 Our goal is to maximize the benefits of parallel 
computing for the end user.  By assuming only the 
minimum configuration of the hardware and operating 
system, the Mac cluster design has the potential to 
provide an significant advantage to cluster users.  The 
simplicity of using Mac cluster technology makes it a 
highly effective solution for all but the largest calcula-
tions. We are continuing to improve upon our work for 
the sake of those users and respond to their feedback.

7



  
 Our approach is unique because, while other solu-
tions seem to direct little, if any, attention to usability, 
tolerance to variations in configuration, and reliability 
outside tightly-controlled conditions, we find such 
issues to be as important as raw performance.  We 
believe the ultimate vision of parallel computing is 
(rather than merely to build raw processor power)  to 
make the technology is so reliable and trivial to install, 
configure, and use that the user will barely be aware 
that computations are occurring in parallel.  This arti-
cle presents our progress in building and applying the 
“plug-and-play”  technology to make that vision come 
true.  

 We organize problems with using parallel com-
puters into two categories: 1. Building, operating, 
managing, and maintaining such a machine; and 2. 
Determining how best to solve an application on that 
machine.  Above we describe how our work solves the 
former so that users can maximize their energy on the 
latter.  Mac clusters’ feature set is on par with other 
cluster types and is expanding to grid-like and super-
computing features. However, unlike other ap-
proaches, the Mac cluster solution makes the problem 
of building and operating a parallel computer easy and 
therefore enables the user to most efficiently write, 
debug, and run parallel codes. Because of their ability 
to make computational power accessible, Macintosh 
clusters are uniquely capable of maximizing the im-
pact of parallel computing for scientific and main-
stream users. 
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