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Abstract

In this work we integrate Einstein-Maxwell equations for a point
charge, in a coordinate system first considered by Lake. The family of
solutions obtained includes various well known metrics. A free metric
function acting as a gauge in the solution, is related to the Lorentz
contraction factor in infinity, considering a set of geodesic frames.

It is well known that in the deduction of the metric of a static and spher-
ically symmetric spacetime, in one of the intermediate steps, the following
expression, is obtained,

ds2 = −a(r) dt2 + 2b(r) dr dt + c(r) dr2 + r2 dΩ2, (1)

where dΩ2 ≡ dθ2+sin2 θ dφ2, is the metric of the 2-sphere, and xa = (t, r, θ, φ).
At this point the freedom to select the time coordinate is usually invoked in
order to eliminate the crossed term and end up with the standard relation in
curvature coordinates; see for example [1].

Following Lake [2], we shall start directly from the line element (1) and
integrate the Einstein-Maxwell equations corresponding to a charged point
particle which, in the usual notation, are
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∇b F ab = 0 (2b)

∇[a Fbc] = 0, (2c)

where G is Einstein tensor and F is the electromagnetic field. By spherical
symmetry F 01 = −F 10 are the only non zero components of F, so that (2c)
is identically satisfied. On the other hand, (2b) can be written as

1√
−g

∂b(
√
−gF ab) = 0, (3)

where g = (ac+ b2) r4 sin2 θ is the determinant of the metric defined by (1).
After integration of (3) we obtain

F 01 =
1√

ac + b2

q

r2
. (4)

We have identified the integration constant with the electric charge q. With
this relation for F 01 we can write the Einstein equations, which turn to be
(2a),

ac− a + b2 − a′r

r2(ac + b2)
= −1

2

q2

r4
(5)

b(ac′ + ca′ + 2bb′)

r(ac + b2)2
= 0 (6)

(ac + b2)2 − a2 c + r a2 c′ − ab2 + 2rabb′ − rb2a′

r2(ac + b2)2
=

1

2

q2

r4
. (7)

In these equations a prime denotes derivatives with respect to the radial
coordinate r. Equation (6) can be integrated to obtain

ac + b2 = 1, (8)

where the integration constant has been chosen to insure that spacetime
be asymptotically minkowskian. Using (8) in (5) the integration is easily
performed, obtaining

a(r) = 1− 2m

r
+

q2

r2
. (9)
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The integration constant is −2m. Finally, we find the value of b(r) from (8),

b(r) = ±
(

1− c(r) +
2m

r
c(r)− q2

r2
c(r)

) 1
2

. (10)

It can be verified that (7) is satisfied for these values of a and b, indepen-
dently of the value of c(r). In summary, the Einstein-Maxwell field equations
admit as a solution the family of metrics, having c(r) as a gauge function,
given by the line element

ds2 = −(1− 2m

r
+

q2

r2
) dt2 ± 2

(
1− c +

2m

r
c− q2

r2
c

) 1
2

dr dt + c dr2 + r2dΩ2.

(11)
It is important to stress that the choice of the gauge c(r) amounts to

the election of an observer and the corresponding temporal coordinate. For
example, choosing c = (1− 2m

r
+ q2

r2 )
−1 and denoting the temporal coordinate

by T, leads us to the Reissner-Nordström solution in the usual Schwarzschild
standard coordinates

ds2 = −f(r) dT 2 + f(r)−1 dr2 + r2dΩ2 (12)

with

f(r) = (1− 2m

r
+

q2

r2
). (13)

If instead we choose c = 1− 2m
r

+ q2

r2 , the result is

ds2 = −(1−2m

r
+

q2

r2
) d t̂ 2+2(

2m

r
−q2

r2
) dr d t̂+ (1−2m

r
+

q2

r2
) dr2+r2dΩ2 (14)

which is the expression reported by Papapetrou [3]. Selecting c = 0, and
denoting the temporal coordinate by u, equation (11) becomes

ds2 = −(1− 2m

r
+

q2

r2
) du2 ± 2dr du + r2dΩ2 (15)

which is the Reissner-Nordström spacetime in the Eddington-Finkelstein null
coordinate system [4].

Following [5] we shall suppose that c is a constant parameter restricted by
0 < c ≤ 1. We shall show that c is related with Lorentz contraction factor at
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infinity, and that the family of solutions moves continually between Painlevé-
Gullstrand metric [6], [7] when (c = 1) and that of Eddington-Finkelstein
(c → 0) for Reissner-Nordström geometry. Let us consider the geometry of
the spacetime described by the line element (12) and a free falling coordinate
system from spacial infinity, radially towards the origin r = 0. This family
of radial geodesics [r(τ), T (τ), θ = constant, φ = constant] is determined
by two conditions: first, the normalization of the 4-velocity of the geodesic
observer, u.u = −1, and second, if k is a Killing vector, then k.u = constant
along the geodesic [8].

The first condition results, from (12),

f Ṫ 2 − f−1 ṙ2 = 1, (16)

while for the time like Killing vector associated with symmetry under time
translations, ka = δa

0 , the second condition establishes that

f Ṫ = A (17)

In these equation a dot denotes derivatives with respect to the proper time.
In order to appreciate the meaning of A, let us express it in terms of the
ordinary radial velocity V ≡ ṙ

Ṫ
. Using (16) and (17) the result can be written

as follows:

A =
f

3
2

√
f 2 − V 2

. (18)

Evaluating this equation in r =∞, where f = 1, we have

A =
1√

1− V 2
, (19)

which shows clearly that A is the Lorentz contraction factor in infinity. Let
us solve (16) and (17) for the components (ṫ, ṙ) of u. After lowering indices
the result is

ua = −Aδ0
a − f−1 (A2 − f)

1
2 δ1

a, (20)

thus ua satisfy that ∂bua − ∂aub = 0, from which we get ua = −∂aT̃ . It is
clear that the hypersurface T̃ = constant is the spatial section of the geodesic
observer with 4-velocity ua, therefore T̃ is the time coordinate associated with
the free falling observer. Using (20) we get

dT̃ = A dT + f−1 (A2 − f)
1
2 dr. (21)

4



Solving for dT and using (12), the result is given by

ds2 = −(1− 2m

r
+

q2

r2
)
dT̃ 2

A2
+2

√
1− 1

A2
(1− 2m

r
− q2

r2
) dr

dT̃

A
+

1

A2
dr2+r2dΩ2

(22)
which, after redefining T̃ /A → t, matches with solution (11) which was
obtained through the integration of the field equations, if we identify c with
A−2

Some final comments are in order. Note that for c = 1 (A = 1, no
Lorentz contraction factor, zero initial velocity for the free falling observer),
the resulting line element is

ds2 = −(1− 2m

r
+

q2

r2
) dt2 + 2

√
2m

r
− q2

r2
dr dt + dr2 + r2dΩ2 (23)

which is the Reissner-Nordström geometry representation in the Painlevé-
Gullstrand coordinates. Observe also that the general solution, equation
(11), is not singular at the horizons of the Reissner-Nordström spacetime, r±
= m± (m2 − q2)

1
2 , except for the Schwarzschild-like coordinates.

It is interesting to note that the family of metrics of the 3-space orthogonal
to u are given by

ds2
(3) = c dr2 + r2 dΩ2 (24)

thus, for the observer who starts from infinity with zero velocity (c = A =
1) the space is euclidean, corresponding to zero contraction of the radial
distances. As we consider larger velocities at infinity, the contraction of the
radial distances gets larger as well as the non euclidean character of space.
In the limit c → 0 (infinite Lorentz contraction, null geodesic) the 3-space
collapses to the 2-sphere, ds2

(2) = r2 dΩ2.
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