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ABSTRACT

The Herrera-Jiménez-Ruggeri method is employed to analyse the evolution of
anisotropic radiating fluid spheres endowed with viscous stresses. The growth of the
anisotropy with the distance to the centre allows us to divide the sphere interior into
three concentric zones, which differ from each other in the degree of interaction
between matter and radiation. The compression wave plays a greater role in the
dynamics than it does in the isotropic case. Other effects are also considered in detail.
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1 INTRODUCTION

In many instances, giant stars and compact objects like neu-
tron stars are partners in binary systems. During their evolu-
tion the giant component may overcome the Roche lobe,
losing mass to its companion. In some cases, the mass
engulfed by the neutron star may destabilize it, triggering a
highly relativistic collapse. Also highly relativistic is the col-
lapse of the neutron star left over in supernovae explosions.
The dynamics of collapsing, dense stars is deeply influenced
by the opacity of their core (Kazanas 1978; Kazanas &
Schramm 1979; Shapiro & Teukolsky 1983; Bruenn 1985;
Demiariski 1985; Bahcall 1989). At very high densities the
neutrinos get trapped in it; this strongly reduces the lumino-
sity of the star and greatly affects the thermodynamic quan-
tities within the fluid. The maximum attainable temperature
during collapse is about 10'! to 10'? K, and the cooling
necessary to recover the equilibrium is obtained by neutrino
emission which, at those high densities, becomes dominated
by the neutronization reaction e~ +p- v,+n (Shapiro &
Teukolsky 1983; Bruenn 1985; Demianski 1985; Bahcall
1989). In the core, the equilibrium between matter and radi-
ation is governed by the absorption and emission of neu-
trinos and antineutrinos on free nucleons, and from the
nucleon absorption, v.+n—e~ + p; the latter turns out to be
the most important source of neutrino opacity.

Another important aspect, though frequently overlooked
in the literature, refers to viscosity. In fact, the viscous part of
the stress-energy tensor does not vanish in general for a
mixture of radiation and matter (Weinberg 1971), and so a
realistic treatment of gravitational collapse should take it into
account (Santos 1984; Barreto & Rojas 1992; Martinez &
Pavon 1994). Viscosity can be understood as a phenomeno-
logical consequence of the exchange of momentum between
the different layers of the star; hence it inevitably arises in

the star core because of the intimate interaction between
radiation and matter there. The existence of shear viscosity
increases the anisotropy of the system. In some neutron stars,
the exotic phase transition (Sawyer & Scalapino 1973), the
solid-liquid coexistence due to the presence of a crust
(Ruderman 1972), and the superfluid-normal fluid transition
due to the presence of a superfluid state are sources of
anisotropy as well.

In this paper, we use the Herrera-Jiménez-Ruggeri
method (Herrera, Jiménez & Ruggeri 1980, hereafter HIR)
to obtain non-static solutions to the Einstein equations for a
radiating fluid with viscous pressure. The radiating fluid
viscous sphere is properly matched to the Vaidya exterior
metric, and the evolution of the sphere is restricted by regu-
larity conditions, by a heuristic assumption relating density,
pressure and radial matter velocity, and by a physical
description of the radiation-hydrodynamic scenario. This
ansatz, guided by solid physical principles, reduces the
problem of solving Einstein equations to a numerical integra-
tion of a system of ordinary differential equations for quan-
tities evaluated at the boundary surface. This method has
been used to model a variety of situations: anisotropic col-
lapse (Cosenza et al. 1982), propagation of shock waves
(Herrera & Nufiez 1990), viscous process in the diffusion
approximation (Barreto & Rojas 1992), radially oscillating
stars (Aquilano, Barreto & Nufiez 1994), collapse of slowly
rotating stars (Herrera et al. 1994), and others (Barreto &
Nifiez 1991; Aguirre, Herndndez & Nunez 1994). We
assume the system to be composed of matter and radiation,
and the degree of interaction between them to be non-
uniform throughout the star. The evolution of the inner
regions is governed by the diffusion process, while in the
crust the situation is reversed, since the interaction between
matter and radiation there is almost non-existent. In this con-
text, there are two distinct contributions to the anisotropy of
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the system: the non-diffusive radiation and the shear viscous
pressure. As it turns out, both viscosity coefficients present
the same behaviour and order of magnitude. Shortly after the
beginning of the collapse, a compression wave builds up at
the centre of the star, which on its way outward deeply
affects the evolution of the system. As the surface falls down,
an interesting effect takes place. The material just beneath it
reverses its radial velocity and eventually starts to travel out-
wards. ,

This paper is organized as follows. In Section 2, the aniso-
tropic stress-energy tensor for a non-comoving observer in
Bondi coordinates is constructed. In Section 3, the Einstein
equations are presented. These, together with the junction
conditions and surface equations (Section 4), allow us to find
four quantities which govern the collapse. Nevertheless, in
the case of anisotropic collapse, an additional equation is
needed to solve the field equations. This equation, which
links radial to tangential pressure, is introduced following
Cosenza et al. (1981, 1982). In Section 5, to find the radia-
tion energy density and the viscosity coefficients, we assume
a very simple structure for the star. It consists of three differ-
entiated zones: the core in which the opacity of the matter is
very high; the most external part of the star, the crust, in
which the radiation practically does not interact with matter,
and consequently viscous stresses vanish there; and an inter-
mediate zone, located between these two, which smoothly
connects them. This is illustrated by means of an example.
Finally, the last section summarizes the results of this work.
To illustrate them, the differences between this anisotropic
model and the isotropic one, i.e. radiation in the diffusion
regime throughout the star and vanishing shear viscosity, are
presented.

We adopt metrics of signature —2. The quantities sub-
scripted with ‘@’ denote that they are evaluated at the surface.
The subscripts 0 and 1 indicate partial differentiation with
respect to time (u) and radial coordinate (), respectively.

2 STRESS-ENERGY TENSOR

We consider a sphere composed of a material medium plus
radiation. Thus the stress-energy tensor, as seen by a local
Minkowskian observer comoving with the fluid, splits into
three terms: a material term, T‘,‘fv, a radiation term, T,‘},,, and
a third term, T}",,, which reports the viscous character of the
matter-radiation interaction of the fluid. The comoving
Minkowskian observer coincides with the Lagrangian frame
(the proper frame), which is the frame where the interaction
between radiation and matter is most easily handled (Mihalas
& Mihalas 1984). The physical variables are obtained as
measured by this observer, and the effects of gravitation are
clearly provided through the appropriate transformation to a
curvilinear coordinate system.

For the above local comoving observer the material part of
the stress-energy tensor has the form

T;%=(IOM+P) U;t Uv _Pﬂyw
and the viscous part has the form
Ty,=t,=4,+0P,,

where 7,, denotes the traceless viscous pressure tensor,
P,=n,- U” U, is the spatial projection tensor, and IT is the
bulk viscous pressure.

The radiation portion of the stress-energy tensor reads
(Lindquist 1966; Mihalas & Mihalas 1984)

P -F 0 0
~-F
- P 0 0
0 0 2, 0
0 0 0 2

where # denotes the radiation energy density flow, og the
radiation energy density, & the radiation pressure, and
P, =Hpr—2). These quantities are the moments of the
specific intensity of radiation, I(x, t; n, v), which for a planar
geometry can be written as

© 1
pR:%J va du I(x, t; n, v), (1)
0 -1
Lfe [
9‘=5 dv| dupl(x, t;n,v) (2)
Jo J-1
and
1 [ ”1
y:i dv | dup’I(x, t;n,v), (3)
JO J-1

where p=cos 6. In classical radiative transfer theory, the
specific intensity of the radiation field, I(x, ¢ n, v), at the
position x and time ¢, travelling in the direction n with a
frequency v, is defined so that

d&=1(x,t;n,v)dS cos adddvds (4)

is the energy crossing a surface element d.S, into solid angle
d® around n(a is the angle between n and the normal to dS),
transported by radiation of frequencies (v, v+ dv), in time d¢
(see Mihalas & Mihalas 1984 for details).

Finally, the dissipative terms in the stress-energy tensor,
AT,,, must satisfy the relation AT,, U*U”=0. Applying this
condition to the viscous part of the stress-energy tensor, and

using the traceless condition of 7,,, we obtain

0 0 0 0

N 0 0

Tl 0 —(w)2) 0
0 0 0 —(/2)

Thus, for a local observer with radial velocity w, comoving
with the fluid, the stress-energy tensor in local Minkowskian
coordinate takes the form

T;w=(p+PJ_ ) UMU‘V—Pl Ny
+P—=P ) {4~ #,0,~ #,U,,

with

U,=(1,0,0,0),

£.=(0,1,0,0),

Z,=(0, #0,0),

P.=P+2Z+1+m, (5)

P, =P +i(og—32)—3m. (6)
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Now, by applying a Lorentz boost in the radial direction we
obtain the stress-energy tensor in Minkowskian coordinates
as seen by a non-comoving observer,

T/w= LZ( - w) Lg(_ w) Taﬂ‘

Under this transformation the stress-energy tensor can be
written as

f

T;w=(p+Pl)U/4Uv—P_Ln/w
+P=P ). x,— Z,0,—-Z,0,

v v~ us

where

U,=y(1, - ,0,0),
X.=7(—0,1,0,0),
Z.,=v¥(-0,1,0,0),
y=(1- @)1,

A further transformation allows us to express the stress-
energy tensor in curvilinear coordinates,

Tyv=AzAgTaﬁ’ (7)

where A¢ is a coordinate transformation matrix which con-
nects Minkowskian to curvilinear coordinates.

In radiation coordinates (Bondi 1964) the interior metric
takes the form

1%
ds’=e? (— du2+2dudr) —r*(d6*+sin’ 6d¢°). (8)
r

In the last equation, u =x9 is a time-coordinate, r =x! is the
null coordinate, and 6 =x? and ¢=x> are the usual angle
coordinates. The u-coordinate is the retarded time in flat
space-time, and u-constant surfaces are therefore null cones
open to the future. The metric variables 8 and V in equation
(8) are functions of u and r. A function m(u,r) can be
defined by

V=e[r—2m(u, r), (9)

which is the generalization, inside the distribution, of the
‘mass aspect’ defined by Bondi, Van der Burg & Metzner
(1962). In the static limit it coincides with the Schwarzschild
mass. In order to give a clear physical significance to the
above formulae, we now introduce local Minkowski coordi-
nates (¢, x, y,z), which are related to Bondi’s radiation co-
ordinates by

V r
e (\ﬁ ! /;dr)’
dx:Cﬂ\/?Vdr,

dy=rd@,
dz=rsin 6dg, (10)
and to the Schwarzschild coordinates (7, R, ©, @ ) by
"r
T=u+| —dr,
u L ,ar
R=r, ©=0, D =4¢. (11)
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Now, applying (7), we obtain
T,=(0+P,)UU,~P.g,
HP =P ) 2o~ Z,U,~ F,U,,

where

V 1 r[1=-w|"”
U= B
u=¢€ (\/:(1 2)1/2a \/:/(1 ) B 0, 0)

Note that
F+U,=0.

For this non-comoving observer the stress-energy tensor in
Bondi coordinates is

_zﬂr _ 1 2

—T,.= +20F + P, R 12
c V uu l_wz(p 2(0 rw) ( )
_ 1

By L ) —
e T, 1+w[p Z(1-w)-Pol, (13)
_p V 1-w

¥—T,=——(0—-2F+P, 14

S T= (o ), (14)
Ty=T4=—P,. (15)

Outside matter the metric is the Vaidya one, a particular case
of the Bondi metric in which =0 and V'=r —2; the stress-
energy tensor corresponds to that of a null fluid, i.e.

T,=c¢k,k,

where

3 THE EINSTEIN FIELD EQUATIONS

Inside matter the Einstein tensor, calculated from (8), reads

=28,V V
Gu= 2L B v 2p ) (16)
1
Gur=;5(ezﬁ—Vl+2/31V), (17)
= (18)

1
G3=G5=62ﬂ 21301—2_;2 [PV =28 V+2r(B V+5 ) .

(19)
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Outside matter we use Vaidya’s metric; the only non-vanish-
ing component of the Einstein tensor is

2my,
Gu= —=5".
r

By substitution of (9) into (16)-(19) and use of the stress-
energy tensor inside matter given by (12)=(15), the Einstein
field equations, G,, = 8nT,,, can be written as

_ 1
e ¥ — 4 T,=

[ tite P+ (1 =21 )r) 11
% uu 4Jtr(r—2rﬁ)[ m,e ( zm/r)ml]

1
= S(p+20F +P.w?), (20)
1—w
= = [o—F(1-w)—
€ ur 4nr2 1+w[lo ( w) Prw]7 (21)
_ V r— 2m 1-w
287 =
+
B o (027 +P), (22)
—T3=—T$
/901e i 2 B
1- 2 2B, 481 ——
4r 8n P+ api r
+3'Bl(1_2m1)—m“=Pl. (23)

8nr

To solve algebraically four of the physical variables (p, P,,
P,, v and &) from the above set of field equations
(20)-(23), we must determine both 8 and 2. We defer this to
the next section. Here, however, we introduce some useful
quantities for later use.

The mass function can be expressed as

=J 4nr’Gdr. (24)

0

It involves an effective energy density given by the right-hand
side of (21),

ﬁ=1T[p F(1-w)=P o], (25)

which in the static limit reduces to the energy density of the
system.
From (22) one has

P 2nr 1-w
= 2F +
A Jaw r— 2m1+w(p P)dr,

and we may rewrite the non-static case as

~

r 2 2

B=| o (o+P)dr, (26)
da(u)r—Zm

with

P=L[— - F(1-w)+P] 27
T1gl 9P w)+P, (27)

being the effective pressure, which also reduces to the radial
pressure in the static limit.

In principle, if 8 and 1 were known, the four quantities, o,
P, w and & could be calculated from the field equations
(20)—(23). Nevertheless, in the anisotropic case the appear-
ance of the tangential pressure increases up to five the
number of unknowns. To infer this relation from microphysi-
cal grounds would be desirable, but at present it is an
extremely difficult task. Some authors (e.g. Herrera & Niifiez
1990) approach the problem by assuming a particular hydro-
dynamic scenario: a homologous collapse (i.e. wr). This
may be regarded as a first-order approximation. This can be
applied in the weak-field approximation only, and it has the
drawback that to find higher order terms by this iterative
method is a rather lengthy task. An alternative way is to
introduce an additional equation. In the anisotropic static
case, there can be found a general equation that relates the
tangential pressure to the mass function, energy density and
radial pressure. In the static case, the particular solution
_1-h m(r) +4nr’P(r)

P, -P
LT r—2m(r)

[o(r) +P(r)]

where 4 is a parameter measuring the anisotropy, is the only
one known for which the Einstein equations can be solved
analytically (Cosenza et al. 1981). The range in which 4 takes
values depends on the specific model. The isotropic case is
recovered by letting 4= 1. This expression is usually general-
ized to non-static cases by writing (Cosenza et al. 1982;
Barreto & Rojas 1992)

1-h i +4xr’ P

P -F=— (6+P) (28)

r—2m

In our case, the parameter 4 will be obtained, and the rela-
tion of the tangential versus radial stress evolves with the
evolution of the sphere.

4 JUNCTION CONDITIONS AND SURFACE
EQUATIONS

Matching the Vaidya metric to the Bondi metric at the
surface (r=a) of the fluid distribution implies B, =
B(u, r=a) =0, together with the continuity of the mass func-
tion #i(u, r) (i.e. the continuity of the first fundamental form).
In addition, the continuity of the second fundamental form,
[Kij]r=a =Kq| r=a+0 _Kljl r=a-0" 07 leads to

rh“ rhla_
—ﬂ00+(1—27) Bi,— 20—-0 (29)

(see Herrera & Jiménez 1983 for details). ‘
Expanding 8 near r=a(u) and restricting ourselves to the

first order, we may write

By, * B, =0, (30)

where an overdot means d/du. Using (30) into (29), together
with (24), (25) and (26), it follows that

N PR AN
i= (1 20)P+/6. (31)

a a
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From the coordinate transformation (10), the velocity of
matter in Bondi coordinates can be written as

dr_ V_w
du rl1-o’

and evaluated at the surface

a=(1—2ﬂ') Da_ (32)
all-w,

Comparing this expression with (31), it follows that

Pr== 0,0, (33)
or equivalently using (25) and (27), we obtain
Z.=Pp, (34)

which is a well-known result for radiative spheres (Santos
1985).

To derive the surface equations, we introduce five
dimensionless functions,

(35)

where m(0) is the initial mass of the system. Using in (32)

the functions just defined, we obtain the first surface equa-

tion,

A=F(Q-1). (36)
The second surface equation emerges from the luminosity

evaluated at the surface of the system. The luminosity, as
seen by a comoving observer, is defined as

E=(4nr’F),_,.

Evaluating (20) and (21) at the surface, and using the expan-
sion

Ty = m—dr, (37)
the luminosity perceived by an observer at rest at infinity
reads

L=-M=EQ2Q-1)F. (38)
The function F is related to the boundary redshift z, by

v, —
l+z,=—2=F""",

a
rec

Thus the luminosity as measured by a non-comoving
observer located on the surface is

E=L(1+z,)= —-¥=E(29— 1),

where the term (2Q — 1) accounts for the boundary Doppler-
shift. Using relationship (38) together with the first surface
equation, we obtain the second surface equation,

p2LHF(-F)@-1)

P (39)

Anisotropic gravitational collapse 467

The third surface equation is model-dependent. For aniso-
tropic fluids, the relationship (7% ,), = 0 can be written as

[ P+p
1"2)’71/)‘ 0,

+Rln—[%(P,—P) =0, (40)

where
P+p m 2
R, =P +|—— +=| == (P, - )
1, Pl, (1 —2ﬁ1/r),, (43"P e , [r(Pl Pr)]“
Using the expansions (37) and
(16+P)0,,z[p~a(1_wa)]O_d(P+p~)l,’

where (33) has been used, we obtain, after a straightforward
calculation,

F @ 3, R, 2 P

—+— - FQP - FQ —=G(F,Q, A), 41
F Q p, B A Pg ( ) )
where
3Q-1 3+F
=(1-Q)|4nAp, ———-—
G(F,Q,A)=( )[u 6. g oA
Q2 R p _p) .
Ba APy

The first surface equation (36) gives the evolution of the
radius of the star. The second one relates the total mass-loss
rate to the energy flow through the surface, and expresses the
evolution of the redshift at the surface. Expression (40), or,
equivalently the third surface equation (41), is the generaliza-
tion of the Tolman-Oppenheimer-Volkov equation to the
non-static radiative anisotropic situation.

The algorithm of the HIR method as applied to this model
may be summarized as follows.

(i) Take a static, but otherwise arbitrary, interior solution
of the Einstein equations for a spherically symmetric fluid
distribution,

0y=p(r).

and that in the static limit these functions reduce to o, and
P, respectively. The junction condition (33) relates the time-
dependence of both quantities.

(iii) Introduce 6(u, r) and P(y, r) into (24) and (26) to
determine # and f up to three unknown functions of time.

(iv) Obtain these three functions of u by solving a system
of ordinary differential equations evaluated at the surface.
The first two, which come from (36) and (39) respectively, do
not depend on the choice of the static interior solution; how-
ever, the third one, which arises from

( Tlf;,u)a = O’

does not enjoy such a property.

(v) Impose one of the four unknown functions - A, F, Q
or L. Usually the function L related to the luminosity is
chosen, as it is an observational parameter.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994MNRAS.271..463M&amp;db_key=AST

2 VNRAS. 2717 ZZ63M

rt

468 J. Martinez, D. Pavén and L. A. Nuriez

(vi) Once these three functions are known, determine
and B. After this, the Einstein equations (20)-(23), supple-
mented by (28), constitute a closed system of differential
equations.

The rationale behind the assumption on the r-dependence
of the effective variables P and o [points (i) and (ii) of the
above method] can be grasped in terms of the characteristic
times for different processes involved in a collapse scenario.
If the hydrostatic time-scale Jpypr, Which is of the order
~1 /JE% (where G is the gravitational constant, and o
denotes the mean density), is much smaller than the
Kelvin-Helmbholtz time-scale Ty, then in a first approxima-
tion the inertial terms in the equation of motion (41) can be
ignored (Kippenhahn & Weigert 1990). Therefore in this
first approximation the r-dependence of P and p is the same
as in the static solution. Then the assumption that the effective
variables (21) and (27) have the same r-dependence as the
physical variables of the static situation represents a correc-
tion to that approximation, and is expected to yield good
results whenever Jy > Jyypr- Fortunately, x> Z5yvor
for almost all kinds of stellar objects. Thus, for example, for
the Sun we get Fyy; ~ 107 yr, whereas Jyypg ~ 27 min. Also,
the Kelvin-Helmholtz phase of the birth of a neutron star
lasts for about tens of seconds (Burrows & Lattimer 1986),
whereas for a neutron star of one solar mass and a 10-km
radius, we obtain Jypg ~8.61 X107 !1's,

5 THE MODEL

5.1 The radiation scenario: a differentiated anisotropic
layer model

Our aim is to describe the gravitational collapse of a dense
star composed by a mixture of radiation and viscous matter.
Depending on the degree of interaction between both com-
ponents, we may speak of three differentiated zones.

(1) The core. The evolution of this inner zone is governed
by the diffusion process. Matter and radiation interact
strongly, and so they have the same temperature within this
region. In the core of the star, the opacity of the collapsing
matter enhances the diffusion process (Kazanas 1978).

(2) The transition zone. Along this region the system
undergoes the transition from the diffusion approximation
(DA) to the free streaming-out limit (FL).

(3) The crust. This zone is limited to a thin layer which
comprises the most external part of the star; in it the radia-
tion practically does not interact with matter, and the viscous
stresses vanish.

We assume that in the crust the free streaming-out limit
prevails. Since viscous processes arise from interaction
between matter and radiation, they must vanish there. It is
therefore possible to determine the tangential pressure at the
surface. Evaluating equation (6) at r=a, and using (34), we
obtain

PJ.,,= g;+%(pr_3'¢)'

In the free streaming-out limit the condition p, =2 = F is
obeyed; thus last expression implies

P, =0. (42)

Likewise, inspection of (5) reveals that the material pressure
also vanishes at the surface.

The vanishing of the viscosity coefficients at the surface
imposes a time-dependence on the anisotropy parameter A.
This differs from the anisotropic diffusive case in which 4 is
taken as a constant. Evaluating expression (28) at the surface,
and using (38) and condition (33), 4 can be expressed as

LQ?

e -1 (1-Fla-sna @-1)51p.

(43)

From the dependence on L and  of this expression, we may
conclude that the rate of total mass loss and the velocity of
the surface strongly affect the deviation of the system from
isotropy. In fact, a non-radiating configuration should be
isotropic. This contrasts with some previous non-viscous
models where the luminosity has been found to be independ-
ent of the anisotropy of the fluid (Chan 1993).

It is clear that, in order to describe the evolution of the
radiation through the matter configuration, the relativistic
radiation transfer equation (see Anile & Romano 1994 and
Nobili, Turolla & Zampieri 1993, and other recent refer-
ences therein) should be solved together with the Einstein
equations, provided that the junction conditions are satis-
fied. In this way the above radiation moments 1, 2 and 3 are
related to the physical properties of the medium (absorption
and/or emission) and to the geometry of the space-time.
However, this lies far beyond the purpose of the present
work. Despite this, it is possible to consider several other
physically interesting situations in the above-mentioned
limits (i.e. free streaming-out and diffusion) and the physical
scenario described above.

5.2 Evolution of the Schwarzschild anisotropic viscous
solution

We consider a solution inspired by the homogeneous
Schwarzschild anisotropic interior solution (Cosenza et al.
1981). In this model, the energy density and the radial and
tangential pressures are given in the static case by

= Pos

where p, is a constant,

b [ (1= (8/3) )" (1~ (8%/3) a’p)"” }
U 3(1-(8x/3)a”p)"" - (1~ (8n/3) r*0)" |

and

p-p="ip) (_m:)_;z:(:)a)

respectively. The homogeneous Bethe-Borner-Sato (BBS)
equation of state is largely accepted for ‘Newtonian’ neutron
stars (Borner 1973; Shapiro & Teukolsky 1983; Demjariski
1985; Kippenhahn & Weigert 1990). It presents an energy
density practically constant along the system, except at the
surface where it decreases abruptly. The static Schwarzschild
model is, among all known relativistic solutions of the
Oppenheimer-Volkov equation, closer to the BBS equation
of state, but it cannot resemble the abrupt vanishing of the
energy density because of the junction conditions. The impo-
sition in our model of a free streaming-out limit at the surface
(the crust) is an attempt to mimic the behaviour of the BBS
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equation of state, although the Schwarzschild solution cannot
do it. Besides, this homogeneous solution represents, in the
static limit, an incompressible fluid of constant density.
Despite its simplicity, this equation of state is not deprived of
some additional physical interest. The homogeneity of the
mass energy density in this model enables us to study the
viscous hydrodynamic effects on radiating spheres in
General Relativity under conditions that are ‘more extreme’
than any available with ‘more normal’ physical equations of
state.

Following the HIR method, outlined above, as applied
previously to the anisotropic diffusive case (Cosenza et al.
1982; Barreto & Rojas 1992), we generalize these expres-
sions to

[, itrsau),

P [0 otherwise, (44)
_3f) [ gl = £lw) P17~ [1 = f(w) )7

= [3[1—f<u>a2]"’2—g(u)[l—f(u>r2]"/2’ )

_1-3w,
g(u)_ l_wa’
and
1=h(w), . 5 | Wl )+’ P
Py ~P=" (p+P)[_—r—2rh(u,r) ] (46)

Note that equation (44) is a consequence of points (i) and (ii)
of the HJIR method. By substitution of (44) into (24), it fol-
lows that

o [<r3/2> f(w),
(a’/2) f(u)

Using the expressions (44) and (45) in (26), it follows that

if r<a(u),
ifr=za(u).

ﬁ=51—}—lln [(1— ®,) (z%:f;—;):z—%) + wa] . ifr<a(u),

B =0 otherwise. By resorting to (35), the three unknown
functions of u (i.e. f, a and w,) can be written in terms of F, A
and Q. Thus the system of three differential equations reads

A=F(Q-1), (47)
F=%[2L+F(1—F)(Q—1)], (48)
.___FQ (1-F) B

Q= FO-F) 52 [(2+h)Q(2Q—-3)+3], (49)

where expressions (41), (44) and (45), and condition (42)
were used. From (43) and (44), the anisotropy parameter can
be written as

8L

=t e ) 1-Fr-29)"
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To close the system of equations, we suppose that the loss of
mass of the sphere can be described by a Gaussian pulse
centred at u =u,,

M=L= M, /2=l (50)

M2n

where A is the width of the pulse, and M, is the total mass
lost in the process.

Now we are in a position to integrate the system of three
surface equations (47), (48) and (49) for an arbitrary initial
set of data, and to determine 8 and . Then the four field
equations (20)-(23) can be numerically solved, and four
physical quantities can be found, for instance w, &, o and P..
The tangential pressure follows from (46).

We select the following set of initial data,

A(0)=10,  F(0)=08, Q(0)=1,

which corresponds to a dense star initially at rest. In the HIR
approach, models are restricted only by several minimum
reasonable physical requirements:

o(r,u)>0,  p(r,u)>P(u,r),  m(r,u)<ir,
—1<w(r,u)<1. (51)

Consequently, these requisites suggest the running time for
performing simulations.

The figures we describe (Figs 1-16) correspond to the
physical variables of a model with a total radiated energy
taken as a 20 per cent of the initial mass. The hydrodynamic
outcome (compression wave and the double peak in the radi-
ation energy flow density) is also present in simulations with
less radiated mass (i.e. 10, 5, 1 and 0.5 per cent of the initial
mass), but we have a crisper effect with the selected model.
In addition, these results do not differ qualitatively from the
corresponding ones for the non-static Q(0) <1 initial confi-
gurations.

LML N L I

2.40 [ _‘
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L - T r=A ]

< C ]
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X L ]
g C ]
Q r ]
2.20 |- 3
2.10-||1||1|||I|||1||||x|x||||||||I|||||||||-

25 45 65 85 105

Figure 1. Dimensionless energy density as a function of the dimen-
sionless time-like coordinate. Notice the effect of the compression
wave in the inner shells.
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Figure 2. Evolution of the dimensionless radial pressure.
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Figure 3. Evolution of the matter velocity in Bondi coordinates
(dr/du).

5.3 Viscosity and radiation

The transport coefficients of a radiating fluid with mean free
time 7 are given in the diffusion approximation by Weinberg
(1971),

”DA=E ap,T,

1 (opP) |
Cpa=157pa [3_ (5};)"] , (52)
=t a®
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Figure 4. Dimensionless radiation energy density flow as a function
of the time-like coordinate. The elapsed time between equilibrium
states, i.e. when Z can be neglected in the core, is about A (u/m,)=
100.
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Figure 5. Evolution of the dimensionless tangential pressure. Note
that it vanishes at the surface.

where 7, and §p,, are the shear and bulk viscosity coeffi-
cients in the diffusion approximation, y is the thermal con-
ductivity coefficient, and a is a constant parameter that takes
the values 1 and 7/8 for photons and neutrinos, respectively.

In radiation hydrodynamics it is customary (Mihalas &
Mihalas 1984) to introduce two useful quantities, the
Eddington factors, defined by

F P
n=—, n=—. (53)
o, o,
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Figure 7. Evolution of the radius of the star.

The first one, r,, measures the deviation of the system from
DA, whereas r, establishes a sort of ‘state equation’ for the
radiation. The first factor lies within the range

0=r =1,

the lower value corresponding to the equililibrium situation,
and the upper one to free streaming. In DA the value of r,
can be taken as 1/3 (Mihalas & Mihalas 1984). Therefore, in
the non-equilibrium state, it may vary within

rPA=3<r <1=r7,

From (6), we infer that the deviation of the system from DA is
also measured by the difference between the tangential and
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coordinate. The curves are constructed using equation (11) at con-
stant Schwarzschild time 7.
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Figure 9. Dimensionless radial pressure as a function of the radial
coordinate in the isotropic case. The curves are constructed as in
Fig. 8.

radial pressures. Accordingly, we introduce a new parameter
which accounts for the relative anisotropy of the system,

A= P, r P L

P,
It can be related to the optical depth, and it seems reasonable
to suppose that both quantities - A and r, — are connected,
although there are some limitations to the form in which both
parameters can be related. An inspection of Fig. 6 reveals
that this parameter in our modelling lies within the range
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0=A<1. The isotropic condition is fulfilled in the centre,
where A vanishes. In this case, the first Eddington factor
reduces to rPA. On the other hand, A reaches its maximum
value at the surface, where P, vanishes and r, =75, Conse-
quently, for our matter distribution it seems that the simplest
way to comply with these requirements is to assume that

= PP (L= PA) A, (54)

In addition to the simplicity of this interpolation, the influ-
ence of the energy radiation flow on the anisotropy of the
medium is clear.

As mentioned above, the viscous coefficients vanish in the
free streaming limit, i.e. in our case in the crust. In the core,
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Figure 12. Matter velocity in Bondi coordinates for different
values of Schwarzschild time 7. Points marked A are affected by the
compression wave, and points marked B by the sudden increase of
the stiffness of the material.
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Figure 13. Dimensionless radiation energy density as a function of
the radial coordinate. Points marked either A or B have the same
meaning as in Fig. 12.

where the diffusion approximation holds, the viscosity coeffi-
cients are simply given by (52). Although their behaviour in
the transition zone is unknown, they are bound to vary con-
tinuously from the core to the crust. We may model their
behaviour in the transition zone with the help of a weight
function, f(r,). For simplicity, we take this as

rt=r

1 1

f(r)= FL_ DA
ry —n
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Under this assumption, the viscous coefficients in the transi-
tion zone may be written as

n=f(r) Mpa,

1 (aP)
=15y |=—|=—]| |,
=i [3 (ap”
which complete the interplay among radiation flow, viscosity
and anisotropy. Of course, the above strategy does not apply
to the thermal conductivity coefficient, which is only defined
for the diffusive regime. Now, from (54) and (53), the radi-

ation energy density can be found and, for a given 7, the
viscous coefficients follow.
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Figure 16. Evolution of the bulk viscosity coefficient.

5.4 Compressibility index for radiating fluids

In order to understand further the picture emerging from our
modelling, use has been made of a generalization of the con-
cept of compressibility index for non-adiabatic systems. For
radiating bodies the adiabatic index

I,=dlnP
dlnp

does not faithfully measure the stiffness of the system since,
in addition to the hydrodynamic pressure, other sources con-
tribute to the flow of momentum. Following Barreto et al.
(1992), we define

1,=dlnl'l’
dlne

(55)

where

II=y32pw*+ P(1+ 0?)+ 0F(3+ w?)]
and

e=y{p+Pw+2Fw)

are the total flow of momentum in the radial direction and
the energy density measured by a locally Minkowskian
observer, respectively.

6 DISCUSSION

We are aware of the fact that the collapse of a ‘real’ massive
star described as an interior solution of Einstein equations
using a ‘physical’ nuclear equation of state with the corre-
sponding opacities (and emissivities) for the emerging radi-
ation (photons and neutrinos) and fluid material stresses is
far from solved. Our main concern in this paper has been to
explore the hydrodynamic consequences of solving the
Einstein equations for a bounded (fully matched interior with
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the exterior solution) spherical distribution of matter where
viscous and radiation effects could be relevant. In order to
solve the Einstein system of equations, several heuristic
assumptions have been adopted concerning the radiation
scenario and the nuclear equation of state for the matter dis-
tribution. These assumptions seem to be reasonable, and
they describe a plausible general relativistic gravitational
collapse.

Using the above-mentioned method, we have been able to
work out the physical variables of a model which is free of
singularities everywhere, matched with the exterior Vaidya
metric. There are two processes that may induce anisotropy
in the system, namely the shear viscosity and the non-
diffusive radiation. As mentioned above, as long as the
non-diffusive radiation dominates in the external layers, the
viscous pressure in the crust is negligible. In the core,
however, the situation is quite different, as the shear viscosity
predominates there. As can be seen in Fig. 6, the anisotropy
increases with the distance from the centre of the star, which
shows that the largest contribution to the anisotropy is due to
the non-diffusive radiation. By contrast, the contribution of
the shear viscosity, which is important in the core, is much
lower. In the initial stages the radiative transfer in the star is
dominated, except in the crust, by diffusion process; later,
during the collapse, the system approaches free streaming.
Nevertheless, the radiation in the core remains close to DA.

In order to evaluate the differences between anisotropic
and isotropic cases, we have integrated the system of three
differential equations in the isotropic case. This model is
recovered from the anisotropic one by taking #=1 and set-
ting viscous coefficients to zero everywhere. Except at the
surface, the different behaviour of these two models becomes
manifest throughout the star, since the loss of mass is given
by (50) with the same values for A, M,,; and u,.

Initially the energy density, as in the Schwarzschild model,
is constant throughout the star. The collapse starts when an
instability is produced in the centre. Then the central energy
density decreases, and the condition 0,0/0r<0 ceases to be
fulfilled. This instability propagates throughout the star and
eventually reaches the surface which falls down. Then the
energy density starts growing in the centre, and the system
evolves toward equilibrium.

Although the loss of mass is the same in both cases, the
radius of the star in the new equilibrium state is larger in the
isotropic case (Fig. 7); hence the compact objects produced
in anisotropic collapses are denser and stiffer. This property
seems to be independent of the radiating anisotropic model
adopted (Chan 1993).

The pressure in the centre mounts up to a maximum value
and decreases immediately thereafter. This variation of the
central pressure generates a compression wave which travels
to the surface (Figs 8 and 9). Its maximum value in the aniso-
tropic case is roughly double that of the isotropic one and,
consequently, the dynamics of the system are much more
influenced by the compression wave in this case. Since in
the isotropic case the wave is comparatively weak, the energy
density remains nearly unaffected. By contrast, in the aniso-
tropic collapse the wave is much stronger, and consequently
the variations in the energy density are seriously inhibited -
compare Figs 10 and 11. It can safely be said that in the
latter case the star becomes stiffer. On its way towards the
surface the compression wave becomes so attenuated that it

vanishes at 7= 0.7A4, (Fig. 8). At the same time as the mass
loss is reduced, and consequently the luminosity, the com-
pression wave becomes weak and, as mentioned above, the
system comes close to the isotropic case.

Because of the presence of viscous processes, the interior
radiation energy density flow is, in the anisotropic case,
larger than it is in the isotropic case. When any spherical
shell is traversed by the compression wave, the pressure
gradient changes its sign in it. Thus this diminishes its radial
velocity, and the radiation energy density flow and radiation
energy density decrease accordingly - Figs 12 and 13. Once
the compression wave has gone through it, it increases its
radial velocity towards the centre and the radiation energy
density flow augments. In our opinion, this is the origin of the
formation of two successive maxima in the radiation energy
density flow in the shell (Fig. 4). The compression wave
cannot account for the behaviour observed just beneath the
surface. In these external layers a minimum in the radiation
energy density flow and in the radiation energy density (Fig.
13) is transmitted from the surface to the interior. To clarify
this surface effect, we resort to the concept of compressibi-
lity.

The resistance of the shells close to the surface to being
compressed increases abruptly (Fig. 14). This effect only
affects a few shells close to the surface, and it is transmitted
inwards. Consequently, the matter close to the surface
reverses its velocity and starts to travel outwards (Fig.12).

" The width of the pulse imposed over M is very small.
Thus, for m(0) =1 M, the time elapsed between the equilib-
rium states is shorter than 1 ms. The core reaches equilib-
rium only about 0.50 ms after the beginning of the collapse
(Fig. 4). When the collapse lasts for about 1 s, the behaviour
of the system is very simple; all variations in pressure and
energy density have plenty of time to get through the sphere
before the collapse ends. As a consequence, the process is
quasi-static, and the hydrodynamic collapse time-scale is of
the order of magnitude of the diffusion time-scale.

Since the system of differential equations (47)-(49) is
evaluated at the surface, our assumption of three different
layers does not affect their solution. This model may be justi-
fied a posteriori as follows. When the collapse is very fast, the
hydrodynamic collapse time-scale is about 0.50 ms (Fig. 4).
If the free streaming-out limit were valid throughout the star,
the radiation generated in the centre would reach, for an
initial radius about 15 km, the surface in approximately 0.05
ms. This indicates that the radiation finds some obstacle on
its way outwards. Furthermore, viscosity stresses are present
only in the diffusion approximation zones, and some of the
effects seen in the inner core seem inexplicable beyond this
limit.

The radiation energy density allows us to find an upper
bound to the speed of the collapse. Because the material part
is positive-definite, the relationship

5

ou=p—p,>0

holds. The radiation energy density is obtained from (53),
and increases with the radiation energy density flow. Both
the total loss of mass in the collapse M,,4 and the width of the
pulse A are input data in the model. If M, is increased or 4
decreased, the radiation energy density flow increases, and
for some values of M,,4 and A the radiation energy density

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994MNRAS.271..463M&amp;db_key=AST

VRRAS_Z71 Z463M

&
[t}

(o]

outweighs the total energy density. Hence these sets of values
must be discarded.

As can be seen by contrasting Figs 15 and 16, the behavi-
our and order of magnitude of both viscosity coefficients are
similar. Thus, for a mixture of matter and radiation, the bulk
viscosity should not be neglected in favour of the shear
viscosity a priori.
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