Una Infraestructura Genérica para Computacion Distribuida en la Web
A Generic Infrastructure for Web Computing

Enrique V. Carrera

Pablo Bustamante

Fausto Pasmay

Systems Engineering Department
University San Francisco of Quito
PO Box 17-12-841, Quito, Ecuador

{vinicioc, pablo, fausto}@usfg.edu.ec

Abstract

This paper proposes a generic infrastructure for the de-
velopment of parallel and distributed applications on the
Web. The infrastructure is oriented to allow that every sin-
gle host in the Internet can participate in the execution of
distributed applications using a very simple configuration
with rigid guarantees of security. Our proposal is based on
the use of World Wide Web protocols and Java applets, ex-
clusively. Thus, users willing to participate in the execution
of applications only require a conventional Web browser
with the Java Runtime Environment enabled. This work dif-
fers from previous proposals in its simplicity and improved
performance. In addition, our study includes a detailed
evaluation of real parallel applications.

1. Introduction

The Internet has been growing rapidly over the last few
years interconnecting billions of computers all over the
world. A significant fraction of these computers is idle
most of the time. For instance, home computers have had
a tremendous processing power increase but most of their
resources remain practically unused. Considering this huge
aggregated processing capacity, the Internet can be seen as
a convenient platform for the execution of parallel and dis-
tributed applications.

This singular view of the Internet has already been ex-
ploited by Enterprise [16], Grid [1] and Peer-to-Peer [14]
Computing. However, using the Internet as a metacomput-
ing resource introduces new difficulties and problems. The
most important of these problems are the heterogeneity of
the participant systems, difficulties in administering the dy-
namic execution environment, critical users’ security con-
cerns, and high communication delays.

In order to attenuate some of the problems mentioned
above, we propose a generic infrastructure for the devel-

opment of parallel and distributed applications on the Web.
This infrastructure is oriented to allow that every single host
in the Internet can participate on the execution of distributed
applications using a very simple configuration with rigid
guarantees of security. Our proposal is based on the use
of World Wide Web protocols [11] and Java applets [18],
exclusively. Thus, users willing to participate in the execu-
tion of distributed applications only require a conventional
Web browser with the Java Runtime Environment enabled.

In this form, the heterogeneity of the participant systems
is not a problem anymore, since the Java Runtime Environ-
ment is very portable. In fact, Java is supported by innu-
merable operating systems and hardware architectures. In
the same way, the difficulties in administering the dynamic
execution environment are reduced. There is no need of
installing software or configuring users at each participant
host. Finally, security concerns from machine owners dis-
appear. The Java Runtime Environment takes control of all
the operations executed by Java applets, since they are run
inside the Java sandbox [12].

Another mentioned problem is the high communication
delays existing in the Internet. Although, these delays are
being reduced by the new hardware and software infrastruc-
tures present in modern networks [8], our proposal provides
a peculiar mechanism for the communication among appli-
cation components. This mechanism breaks the limitation
imposed by the host-of-origin browser security policy that
establishes that applets can only communicate with the host
where they were loaded from. Using digitally signed ap-
plets, users willing to trust the developers’ signature can
allow direct communication among applets in different ma-
chines. However, in order to support hosts belonging to pri-
vate networks (i.e., behind NAT or PAT) or hosts with users
that do not trust specific applets, our proposal also contem-
plates the possibility of communication through the host-of-
origin of the applets.

Besides these basic characteristics, our proposal also in-
cludes a new Java class library and a set of debugging and

monitoring tools. The Java class library helps developers
to write new applications using a simple, high-level view
of our infrastructure. In this way, developers can concen-
trate in defining application’s behavior instead of worrying
about implementation details. Finally, the set of debugging
and monitoring tools allows us to capture and replay every
packet exchanged among applets, besides some other ac-
tions taken by them. The tools include both text-based and
graphical interfaces.

This proposal was evaluated using three different appli-
cations, besides some specific microbenchmarks. The re-
sults of our evaluations show that the scalability of our in-
frastructure is very attractive for coarse-grain applications.
Fine-grain applications do not scale well, but they could
also have some important benefits. The results of our mi-
crobenchmarks show that the maximum bandwidth achiev-
able using direct communication between applets is almost
the same of using indirect communication through the host-
of-origin. However, message latency is reduced by around
70% when direct communication is used instead of indirect
one.

The remainder of this paper is organized as follows. In
the next section, we discuss some background concepts re-
lated to our work. Section 3 describes in detail the proposed
infrastructure. The evaluation of our particular implemen-
tation is presented in section 4. Then, section 5 analyzes
the main works related to our proposal. Finally, section 6
summarizes our findings and concludes the paper.

2. Background

In this section we would like to discuss some concepts
that support the main topic of our research. More specif-
ically, we would like to review some ideas related to the
World Wide Web, the Java platform, and digital signatures.

2.1. The World Wide Web

The World Wide Web, or simply Web, is the major ser-
vice deployed on the Internet. The Web is made up of Web
servers that store and disseminate Web pages, which are
text documents embedded with HTML (HyperText Markup
Language) tags that define how the text will be rendered
on screen. Web pages are accessed by the user via a
Web browser application such as Internet Explorer, Fire-
fox, Opera, Netscape, etc. These Web browsers commu-
nicate with Web servers primarily using HTTP (HyperText
Transfer Protocol). HTTP allows Web browsers to fetch
Web pages from Web servers as well as submit information
to them.

Web servers normally store HTML pages. However, they
can also be a storehouse for any kind of file delivered to a
client application via HTTP. In other words, modern Web

pages are “rich” documents that contain text, graphics, ani-
mations and videos for anyone with an Internet connection.
The browser renders the pages on screen and automatically
invokes additional software as needed. For example, ani-
mations and special effects are browser plugins, and audio
and video files are played by the media player software that
either comes with the operating system or from a third party.

2.2. The Java Platform

Java SE (Standard Edition) [18] is a complete environ-
ment for application development and deployment. There
are two principal products in the Java SE family: the Java
Runtime Environment (JRE) and Java Development Kit
(JDK). The first one provides the Java Virtual Machine
(JVM), the Application Programming Interface, and several
other components needed for running applications. The sec-
ond product permits the development of new applications
written in the Java language. Basically, it is a set of compil-
ers and development tools.

In this paper, we are focused in the use of Java applets.
Applets are software components written in Java that run in
the context of a Web browser or container. Applets can eas-
ily be embedded into HTML pages and executed by Java-
capable browsers. A Java-capable browser is one with the
JRE plugin installed and enabled.

When a browser is used to view a page that contains an
applet, the applet’s code is transferred from the Web server
to the local machine and then executed by the browser’s
JVM inside the Java sandbox. The Java sandbox restricts
applets from performing unsafe activities. It basically relies
on three prongs of defense: the Bytecode Verifier, the Class
Loader, and the Security Manager. Together, these three
prongs perform load and runtime checks to restrict filesys-
tem and network accesses, as well as browser internals [12].

In the case of applets, the policies adopted by the Secu-
rity Manager become very restrictive, allowing only a lim-
ited set of possible elements (e.g., the host-of-origin con-
straint). In order to overcome the limitations imposed by
the Security Manager, the applet must be digitally signed,
and the client must trust (and accept) the applet by confirm-
ing the digital signature.

2.3. Digital Signature

Digital signature is a cryptographic mechanism for
guaranteeing message authenticity, integrity and non-
repudiation. Authenticity allows the recipient of a message
to confirm the identity of the sender. Integrity guarantees
that the message has not been altered during transmission.
And finally, non-repudiation avoids the sender to deny its
association with a particular message.

Client | | Client

Coordinator«

<« = Broker
<> Direct

Figure 1. Structure of a typical application.

Public-key digital signature schemes rely on public-key
cryptography. In public-key cryptography, each user has a
pair of keys: one public and one private. The public key
is distributed freely, but the private key is kept secret and
confidential.

The distribution of public keys is made through Digital
Certificates [6], that for actual security should come from
a known and trusted Certificate Authority, which validates
that the key belongs to whom the certificates claims to be.
There exist several levels of certification, and each one re-
quires more evidence that the information provided is accu-
rate and belongs to the person who ask for that certification.

3. Infrastructure Description

In this section, we describe the main components of
the proposed infrastructure and their corresponding inter-
actions.

3.1. Basic Architecture

In our infrastructure, applications are a collection of
asynchronous cooperating applets where we can distinguish
three main type of components: a communication broker,
an application coordinator, and one or more clients. Obvi-
ously, because most of the components are accessed through
a Web browser, we also need a Web server. Figure 1 shows
the typical structure of a distributed application using our
generic infrastructure.

The Broker. The communication broker is the central com-
ponent of our infrastructure. Its main functionality is to pass
messages among all the other application components, rout-
ing them in a transparent way. However, other functionali-
ties like name service, synchronization management, shared
memory support, and error handling can also be integrated.

The broker runs as a standalone application on the same
machine that runs the Web server. This is the only compo-
nent that must be executed next to the Web server, since all
the coordinators and clients (i.e., Java applets running on a
Web browser) must be able to connect to it without restric-
tions. This component can be written in any programming
language and it is completely independent of the applica-
tion. In fact, a single broker can be simultaneously used by
several applications.

The current implementation of our infrastructure in-
cludes a communication broker written in Java that is ex-
tremely generic in order to support a huge range of applica-
tions. This broker assigns a unique ID to each component
connected to it, and it is able to associate symbolic names
to those IDs. In this way, the broker also performs name
server tasks allowing to know the ID, name, and network
address of each component connected to it.

In this specific implementation, messages are routed
adding a very simple header to each message. Thus, every
incoming message includes the destination ID and its mes-
sage size. After receiving the message, the broker changes
the destination ID by the corresponding source ID and for-
wards the message to the target component connected to the
broker. In this way, the receiver can know where the mes-
sage is coming from.

Since our implementation only supports asynchronous
messages, the broker does not include complex error han-
dling functions. However, our broker is easily extensible
and can be adapted to particular work conditions.

It is important to note that several application compo-
nents communicate through the broker. In other words, this
component must be able to support several simultaneous
data transfers and name service requests. In order to get an
acceptable performance, a multithreaded approach is used
by our current implementation.

The Coordinator. As mentioned, our infrastructure is ori-
ented to run collections of asynchronous cooperating ap-
plets. In this way, we propose to implement task-level par-
allelism using a centralized task queue in our applications.
This computational model is attractive for three reasons: (i)
some parallel/distributed applications are best expressed as
a collection of coarse-grain tasks, (ii) the task queue model
has implicit load balancing, and (iii) fault tolerance mecha-
nisms are easier to implement in such a model.

Based on this, the coordinator is the component in charge
of taking control of one application. It implements the task
queue interface besides some load balancing and fault tol-
erance mechanisms. Advanced load balancing mechanisms
are useful to exploit clients with different processing power
characteristics, while fault tolerance mechanisms are very
important to deal with unreliable clients.

The coordinator basically initiates building the task
queue according to the initial conditions of the application,

connecting to the communication broker, and waiting for
clients. As clients arrive, the coordinator assigns them a
new task and waits for their corresponding responses. At
the end, the coordinator can finish writing the solution com-
puted by all clients to permanent storage devices.

An important characteristic of the coordinator is the fact
that it does not need to be run at the same machine where
the Web server is executing. In fact, the coordinator can be
executed as another client, using the Java-applet technology.
However, reliability is a key characteristic needed by this
component.

The Clients. The clients are the entities that actually per-
form the data processing in our applications. Each client
is an applet that executes inside a Web browser. A host
willing to participate in the execution of a distributed ap-
plication only needs to access the Web page containing the
corresponding applet.

The code of the clients can be general enough to compute
anything we want. However, clients are restricted to com-
municate with the host-of-origin, exclusively. In this way,
clients start connecting to the broker running on the Web
server where they are from, and requesting the ID of their
coordinator. Then, clients ask for their corresponding exe-
cution parameters (or tasks) to the coordinator of the appli-
cation. Finally, after computing each assigned task, clients
send back to the coordinator the results of their computa-
tion.

Direct Communication. The main advantage of the com-
munication model described until now is the possibility of
reaching any computer in the Web, regarding of the client
being behind a NAT or proxy. In fact, we can have several
clients running on the same machine without any problem.
In addition, this approach fulfills all the security restrictions
for applets executed inside Web browsers.

However, the big disadvantage of this communication
model is the extra overhead of passing through the broker
(see line labeled ‘Broker’ in figure 1). Latency and through-
put problems can easily appear due to the extra hop. In fact,
the broker could easily become a bottleneck for some appli-
cations.

In order to solve this problem, we propose to use di-
rect communication among application components. In this
communication model, the clients have the ability of com-
municating among themselves without using the broker (see
line labeled ‘Direct’ in figure 1). However, in this case we
are violating the restrictions imposed by the security model
adopted by Web browsers. Thus, we need to attach a digital
signature to the applets in order to prove the identity and
good intentions of the signer. The user executing the applet
can accept or not this digital signature. If the user executing
the applet trusts and accepts the digital signature, the applet
can overcome the host-of-origin restriction. Otherwise, the

applet does not have other alternative that communicating
through the broker.

The main disadvantages of this new communication
model are the need of real IP addresses for every application
component and its conditioning to digital signature approval
by the remote user/host. On the other hand, its main advan-
tages are the better performance and significant scalability
of our applications.

3.2. Libraries and Tools

An extra goal of this work is to facilitate the development
of new applications using our proposed infrastructure. In
order to achieve this goal, we have created a new Java class
library and some debugging and monitoring tools. These
extra elements of our infrastructure are described in the fol-
lowing paragraphs.

The Java Class Library. Our library provides generic
classes for the development of clients and coordinators used
by new applications. Note that the broker developed in this
work does not have to be modified unless the user needs
new functionalities.

The library has two main classes: The first one facili-
tates to connect any applet to the communication broker,
and the second one allows to connect two applets directly.
Both classes create input and output streams on which mes-
sages can be received and sent, respectively. In addition,
any applet can use the connection to the broker for setting
its symbolic name, asking for another ID or IP address, syn-
chronize among components, etc.

As we can see, our library is mainly oriented to sup-
port an efficient and easy communication among applets.
However, we are planning to extend this library to support
complex error handling methods, advanced fault tolerance
and load balancing techniques, shared memory abstractions
based on Linda-style tuples [20], etc.

The Application Monitor. We have developed a stan-
dalone application that can connect to the broker and dis-
play the instantaneous state of any distributed application
attached to that broker. The level of details showed by the
monitor can be dynamically configured at the broker.
Applications that use broker-assisted communication do
not generate any extra traffic, since the broker is the one in
charge of sending event notifications to the monitor. Ap-
plications that use direct communication among applets re-
ceive a notice from the broker that force them to send event
notifications to the broker. In this case, event notifications
are created by the own Java class library guaranteeing a
very short representation of every event in order to gener-
ate a small amount of traffic. It is also important to men-
tion that each event notification carries a millisecond-level
timestamp that can be very useful in debugging processes.

This application monitor is able of creating a log file us-
ing all the event notifications sent by the broker. The log
can be used later for recreating the execution of applica-
tions through the application replaying option. This option
allows us to debug an application using a dynamically ad-
justed replaying speed, and both text-based and graphical
interfaces.

3.3. Application Examples

In order to probe the feasibility of developing distributed
applications using our infrastructure, we have written three
parallel applications: numerical integration, matrix multi-
plication, and successive over relaxation. These applica-
tions incorporate basic load balancing techniques and sim-
ple fault tolerance algorithms. However, as we can see in
the section 4, the performance of these applications is very
impressive.

Numerical Integration. In this particular implementation,
the integration coordinator starts splitting the interval of in-
tegration in N parts and waits for clients. When a client asks
to the coordinator for its computation parameters, the coor-
dinator sends to the client the lower and upper bounds of the
assigned interval and the corresponding ¢ value. The client
receives the parameters and integrates the coded function
using the Newton-Coates method. After finishing, the client
sends back to the coordinator its partial result and asks for
another interval.

The integration coordinator continues sending the corre-
sponding parameters and receiving the partial results until
all the integration parts have been computed. At the end,
the overall integration result is printed.

As we can see, this application is easily parallelizable,
since there is almost no communication among application
components. The computation in the clients is completely
independent from each other. Thus, this application is ex-
tremely scalable and we do not need direct communication
among clients.

Matrix Multiplication. In this application, the coordina-
tor starts establishing the matrices A and B to be multi-
plied. Then, the coordinator splits the computation in N
tasks, where each task has a determined number of rows
from A and columns from B. After that, the coordinator
waits for clients. When a client asks for a new task, the
coordinator sends back the size of the matrices, and the el-
ements assigned to that multiplication. When the computa-
tion is done, the client sends to the coordinator the results
with their corresponding row and column identifications.

On the other side, the coordinator keeps track of all as-
signed tasks and stores the results sent by clients. After all
the elements of the solution have been computed, the coor-
dinator finishes writing a file with the solution.

As in the numerical integration case, this application is
easily parallelizable. However, there is much more com-
munication between the coordinator and the clients, since
the coordinator sends parts of the matrices A and B to each
client. Although there is no communication among clients,
the communication with the coordinator is extremely de-
manding on network bandwidth.

Successive Over Relaxation. In our SOR implementation,
the coordinator starts defining the matrix to process and
splits it in N equal parts. Each part also includes the lower
and upper adjacent rows. After that, the coordinator waits
for clients to arrive. When a client asks for its task, the coor-
dinator sends back just one part of the matrix, including the
relative position of that part. Then, each client starts com-
puting Qi 5 = (ai+1,j +ai—1,;+aij+1+ am—,l)/él. After
all the elements have been computed, clients must exchange
shared rows with their neighbors in order to proceed with
the next interaction. These steps are repeated by a prede-
fined number of interactions. At the end, clients send their
corresponding parts back to the coordinator which writes
the solution to disk.

As we can see, this application has a lot of communi-
cation among clients. If fact, this is a typical regular ap-
plication that is not easily parallelizable. Every computing
pass requires exchanging shared rows with the lower and
upper neighbors. Based on this, we have decided to im-
plement direct communication between adjacent clients to
reduce communication overhead. In this alternative SOR
implementation, clients send shared rows directly to their
neighbors without passing through the broker.

4. Performance Evaluation

In this section we present some performance results from
two microbenchmarks and three parallel applications. But
before that, a brief description of our methodology is given.

4.1. Methodology

All the experiments were executed in a network of four
Sun Blade 1500 and two Sun Fire V240. The Sun Blade
machines are being used as clients, while the Sun Fire ones
are our servers. All the machines are running Solaris 9/04
and are interconnected by a Fast-Ethernet network with a
3Com 3300 switch. The version of our JDK and JRE is
1.5.0.08.

With relation to our applications, numerical integration
integrates y = (2% + 0.25)~! in the interval 0 < z < 100
using § = 1078, The matrix multiplication multiplies
matrix A[10,8000] by matrix B[8000, 20] using double-
precision floating point representation. Finally, our SOR
application uses a 16000 x 500 matrix of doubles and a
thousand interactions.

Communication | Latency (ms) | Bandwidth (Mbps)
Broker-assisted | 1.037 £ 0.004 93.04 £ 0.05
Direct 0.315 £ 0.012 94.83 £ 0.06
Improvement 69.6% 1.9%

Table 1. Microbenchmark results.

Microbenchmarks. We have built two basic microbench-
marks in order to evaluate latency and bandwidth commu-
nication. The architecture used by the microbenchmarks is
the same described in section 3: We have a master (or co-
ordinator) and a slave connected to the broker. These com-
ponents can use a broker-assisted or direct communication
between them.

The latency test consists in sending a 0-byte message
from the master to the slave and waiting for the correspond-
ing response. This process is repeated 10 thousand times
and the average time is measured. On the other hand, for
the bandwidth test, the master sends 16000-byte messages
without waiting for any response or acknowledgment. After
10 thousand messages, the average bandwidth is computed.

4.2. Results

Microbenchmarks. Table 1 summarizes the latency and
bandwidth results from our microbenchmarks. As we can
see, the latency in the direct communication approach is
approximately 70% lower than in the broker-assisted one.
With relation to the bandwidth measurements, the differ-
ences are less significant. Both communication approaches
practically saturate the 100-Mbps Ethernet links.

We can conclude that direct communication is useful in
terms of latency, mainly. However, even the bandwidth can
be improved when the broker becomes a bottleneck. For in-
stance, consider the case where several copies of the band-
width microbenchmark are running simultaneously using
broker-assisted communication. In this situation, each mi-
crobenchmark shares the bandwidth of a single broker.

In order to determine the actual network limits, we also
wrote a few benchmarks in C. The latency of a ping-pong
communication is 0.22 ms and the maximum achievable
bandwidth is 94.9 Mbps. Thus, we can also conclude that
direct communication is very close in performance to the
values obtained using low-level programming.

Real Applications. Figure 2 shows the speedup of numer-
ical integration using up to 4 computing machines. We can
see a perfect linear speedup, since there is almost no com-
munication among application components.

In similar way, figure 3 shows the speedup of matrix mul-
tiplication. In this case, the application is serialized by the
coordinator during data distribution and result merging, be-

Speedup
n

Number of Clients

Figure 2. Speedup of numerical integration.

54 —8—2Blocking |-----
= A -KeepAlive : :

Number of Clients

Figure 3. Speedup of matrix multiplication.

ing data distribution the most demanding activity. However,
our original application presents a super-linear speedup, as
seen in figure 3 for the line labeled ‘Blocking’. This be-
havior is due to the blocking of the application coordinator
when waiting for client requests. Once the coordinator is
blocked, the JVM takes a long time for unblocking it. How-
ever, while more clients has the application, it is less prob-
able that the coordinator becomes effectively blocked.

In order to verify our previous explanation, we devel-
oped a new matrix multiplication where the coordinator
never blocks. It implements a busy-wait for client requests.
In this case the speedup of the line labeled ‘KeepAlive’ is
not as good as the numerical integration, but we reach an
almost linear speedup.

Finally, the speedup of the SOR application is presented
in figure 4. Our first version uses broker-assisted commu-
nication (line labeled ‘Broker’) and runs on a system with

—&—Broker
25 e - & -Direct | 7T
2 TS
a
=)
? 1.5 Jermremmmmreeb At
)
o
9]
1 e e idiiaaeaeeaaaaaan
0.5 rrmmresmr b
0 ; i T
0 1 4

2
Number of Clients

Figure 4. Speedup of SOR.

up to 4 computing machines. We can see that there is a sig-
nificant speedup, but it drops quickly when the number of
nodes is increased. This behavior can be explained by the
strong synchronization required by the application, and be-
cause the speedup is computed against the application run-
ning in one node where there is no communication at all.

Our second version of this application uses direct com-
munication between clients. Although the performance of
the second version is very similar to the obtained by our
first version, we can see a more linear speedup. The reason
that explains why a broker-assisted communication is better
that a direct communication when 2 clients are used is the
TCP slow-start mechanism. However, when 4 machines are
used, the extra scalability of direct communication outper-
forms the overhead of the TCP slow-start algorithm.

5. Related Work

There are several works related to integrate networked
computers into a global computing resource. Most of these
systems require the maintenance of binaries for all the ar-
chitectures used in the computation, and the program has
to reside at each site (or at a shared filesystem). They also
require the user or the system to have an account on each
machine participating in the computation. All these factors
severely limit their use as a metacomputing facility on the
Web. In addition, current systems have almost no support
for dynamic load balancing or fault tolerance.

Works focused on Java-based distributed computing in-
clude JPVM [10], IMPI [9], ATLAS [2], ParaWeb [7], Java-
Party [17], SMPD Programming in Java [13], WebFlow [5],
Ninflet [19], Charlotte [4], Javelin [15], and KnittingFac-
tory [3].

JPVM and JMPI use Java to overcome heterogeneity,
but are not intended to execute on anonymous machines.

What they provide is a message passing interface for Java
standalone applications (not applets). ATLAS furnishes a
global computing model based on Java, ensuring scalabil-
ity through a hierarchy of managers. It relies on native
code which eliminates the guarantees of a secure program
execution. ParaWeb creates a global computing infrastruc-
ture using extensions to the Java programming environment
(through a parallel class library) and the Java runtime sys-
tem. Users need to install those extensions in order to al-
low a transparent remote execution of Java threads. Java-
Party supplies mechanisms (built on top of Java RMI) for
the transparent distribution of remote objects. JavaParty re-
quires to run a Java process, called LocalJP, in all the ma-
chines used by the computation. Similarly, the usage of the
SMPD programming model on a distributed shared memory
abstraction [13] requires to run a local Java process that acts
as a runtime environment. WebFlow is one of the earlier
workflow systems supporting centralized application com-
position in Grid environments. It includes a complete pro-
gramming paradigm and coordination model for Java that
exclude typical Web browser users. Finally, Ninflet is an in-
frastructure for migratable objects which is being targeted
for idle cycle based parallel computing. Resource providers
need to run the Ninflet Server daemon on their hosts.

As we can see, most of the previous works do not allow
that every single host in the Internet can participate in dis-
tributed computations using common Web browsers. They
all need a local account or at least the possibility of running
local Java processes on each machine.

From previous cited projects, all but Charlotte, Javelin,
and KnittingFactory fail to take advantage of Web browsers
in bringing distributed computing to every-day users. These
systems were specifically designed for parallel program-
ming over the Web. By leveraging the ability of browsers
to download and execute remote applets, they provide the
means for any user, anywhere on the Internet, using any
Java-capable browser to participate in a parallel computa-
tion. Charlotte, Javelin and KnittingFactory have a com-
mon feature in their design: they require a host running
a Web server in addition to a standalone Java application.
The role of the standalone application is to distribute work
among browsers and to act as a message forwarding agent
for communication among applets.

Although KnittingFactory can work in the same way as
the other two proposals, it also has some extra characteris-
tics. First, the possibility of violating the Java sandbox re-
strictions using a customized RMI reference forwarding'.
And second, the capability of running coordination pro-
cesses, called Initiators, on any machine other than the orig-
inal Web server.

Our proposal is similar to Charlotte and Javelin, but we

IThe proposed approach for direct communication between applets
only works in Java 1.1.

also allow direct communication among application com-
ponents using digitally signed applets. The digital signa-
ture mechanism also permits to overcome some other lim-
itations imposed by the Java sandbox, besides the host-of-
origin constrain.

Another important difference of our proposal is the fact
that the application coordinator can be run outside the Web
server. Thus, we have most of the advantages attributed to
KnittingFactory, but with a much simpler approach. Finally,
our study includes a detailed performance evaluation of real
parallel applications.

6. Conclusions

This work describes a simple and generic infrastructure
for running parallel and distributed applications on the Web.
In order to execute existing applications, users only need
a Java-capable Web browser. The proposed infrastructure
also provides a new Java class library and some monitor-
ing and debugging tools for supporting the development of
new applications. Basically, the developer needs to write an
application coordinator and its corresponding clients, since
our communication broker can be reused without modifi-
cation. All applets must be made public through the Web
server running on the machine where the broker is execut-
ing.

Our results show that it is important to use direct com-
munication among application’s components when possi-
ble, since latency and bandwidth performance are signifi-
cantly influenced by the communication model. Other im-
portant factors to take in consideration are fault tolerance
and load balancing, since the Web is not either a reliable
nor a homogeneous platform.

A near-future extension to our work is to use more than
one broker, allowing to have better fault tolerance and scala-
bility in our applications. However, this requires the devel-
opment of more complex name services and coordination
algorithms. In the same way, we are planning to implement
shared memory support using Linda-style tuples [20].

References

[1] M. Baker, R. Buyya, and D. Laforenza. Grids and grid tech-
nologies for wide-area distributed computing. Software —
Practice & Experience, 32(15):1437-1466, December 2002.

[2] J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer. AT-
LAS: An infrastructure for global computing. In Proceed-
ings of the 7th ACM SIGOPS European Workshop on System
Support for Worldwide Applications, 1996.

[3] A. Baratloo, M. Karaul, H. Karl, and Z. M. Kedem. An in-
frastructure for network computing with Java applets. Con-
currency: Practice and Experience, 10(11-13):1029-1041,
1998.

[4] A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wyckoff.
Charlotte: Metacomputing on the web. In Proceedings of
the 9th International Conference on Parallel and Distributed
Computing Systems, 1996.

[5] D. Bhatia, V. Burzevski, M. Camuseva, G. Fox, W. Furman-
ski, and G. Premchandran. Webflow — a visual programming
paradigm for Web/Java based coarse grain distributed com-
puting. Concurrency — Practice and Experience, 9(6):555—
577, 1997.

[6] S. A. Brands. Rethinking Public Key Infrastructures and
Digital Certificates: Building in Privacy. MIT Press, 2000.

[7] T. Brecht, H. Sandhu, M. Shan, and J. Talbot. ParaWeb: To-
wards World-Wide Supercomputing. In Proceedings of the
7th ACM SIGOPS European Workshop on System Support
for Worldwide Applications, 1996.

[8] P. Dickens, B. Gropp, and P. Woodward. High perfor-
mance wide area data transfers over high performance net-
works. In Proceedings of International Workshop on Perfor-
mance Modeling, Evaluation, and Optimization of Parallel
and Distributed Systems, pages 254-262, 2002.

[9] K. Dincer. Ubiquitous message passing interface implemen-
tation in Java: JMPL. In Proceedings of the 13th Interna-
tional Parallel Processing Symposium, 1998.

[10] A. Ferrari. JPVM: Network Parallel Computing in Java.
Concurrency — Practice and Experience, 10(11-13):985—
992, 1998.

[11] R. T. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Mas-
inter, P. J. Leach, and T. Berners-Lee. Hypertext Transfer
Protocol — HTTP/1.1. Technical Report RFC 2616, Internet
Engineering Task Force, June 1999.

[12] A.Herzog and N. Shahmehri. Performance of the Java Secu-
rity Manager. Computers & Security, 24(3):192-207, 2005.

[13] S. F. Hummel, T. Ngo, and H. Srinivasan. SPMD pro-
gramming in Java. Concurrency: Practice and Experience,
9(6):621-631, 1997.

[14] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja,
J. Pruyne, B. Richard, S. Rollins, and Z. Xu. Peer-to-Peer
Computing. Technical Report HPL-2002-57R1, HP Labs,
Palo Alto, CA, July 2002.

[15] M. O. Neary, B. O. Christiansen, P. Cappello, and K. E.
Schauser. Javelin: Parallel computing on the Internet.
Future Generation Computer Systems, 15(5-6):659-674,
1999.

[16] M. P. Papazoglou and W.-J. van den Heuvel. Web services
management: A survey. [EEE Internet Computing, 9(6):58—
64, November—December 2005.

[17] M. Philippsen and M. Zenger. JavaParty — transparent re-
mote objects in Java. Concurrency: Practice and Experi-
ence, 9(11):1225-1242, November 1997.

[18] Sun Microsystems Inc. Java Technology. http://java.
sun.com, June 2007.

[19] H. Takagi, S. Matsuoka, H. Nakada, S. Sekiguchi, M. Satoh,
and U. Nagashima. Ninflet: A migratable parallel objects
framework using Java. Concurrency: Practice and Experi-
ence, 10(11-13):1063-1078, 1998.

[20] G. C. Wells. New and improved: Linda in Java. Science of
Computer Programming, 59(1-2):82-96, 2006.

