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Abstract. The standard definition of cylindrical symmetry in general relativity is reviewed.
Taking the view that axial symmetry is an essential prerequisite for cylindrical symmetry, it is
argued that the requirement of orthogonal transitivity of the isometry group should be dropped,
this leading to a new, more general definition of cylindrical symmetry. Stationarity and staticity in
cylindrically symmetric spacetimes are then defined, and these issues are analysed in connection
with orthogonal transitivity, thus proving some new results on the structure of the isometry group
for this class of spacetimes.

PACS numbers: 0420C, 0420J

1. Introduction

The purpose of this paper is to discuss the standard definition of cylindrically symmetric
spacetimes and give some remarks on its possible generalizations. In particular, the
assumptions which are usually made but are not necessary are pointed out, and the results
presented herein will also be valid in some more general situations. Special attention is
devoted to thestationary and staticcylindrically symmetric cases.

The intuitive idea about cylindrical symmetry is very clear. However, there are some
subtleties which deserve attention in general relativity. Just as an example we can remember
that there are cases in which the axis of symmetry is spatially closed (a closed Robertson–
Walker (RW) geometry, for instance), which may not seem to be in accordance with the
standard view of a ‘cylinder’. Our main assumption is that there is an axial Killing vector
and that at least part of its axis of symmetry belongs to the spacetime. This will be absolutely
essential for all our results. Of course, we could also consider situations where the axis of
symmetry is completely absent, such as, for instance, when treating the exterior field for a
cylindrical source. The axis is inside the source and thus the exterior field could be just any
spacetime with a Killing vector having closed orbits. These Killing vectors can be obtained
by identifying points in spacetimes with a spacelike symmetry, see also [1]. Nevertheless, our
assumption is justified because any globally defined cylindrically symmetric spacetime will
usually contain the axis.

Keeping the above assumption in mind, we need another spacelike symmetry such that
the orbits of theG2 group arelocally cylinders, which must be assumed to be spacelike. The
existence of 2-surfaces orthogonal to the group orbits is an extra assumption, not necessary
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for the definition of cylindrical symmetry, as we will see in a well known example, although
in certain situations it holds as a consequence of the form of the Ricci tensor and the existence
of the axis of symmetry. In summary, the basic ingredient for the cylindrical symmetry is a
G2 on S2 group of motions containing an axial symmetry with the axis present in the given
spacetime.

2. Axial and cylindrical symmetry

The purpose of this section is to review the definition of axial symmetry along with its associated
basic geometrical features, and to put forward and discuss a definition of cylindrical symmetry,
exploring its consequences.

Regarding axial symmetry, one has the following definition (see [2, 3]).

Definition 1. A spacetime(V, g) is said to have axial symmetry if and only if there is an
effective realization of the one-dimensional torusT into V that is an isometry and such that
its set of fixed points is non-empty.

Notice that definition 1 implicitly assumes that there exists at least one fixed point (i.e.
points that remain invariant under the action of the group) in(V, g). In fact, it can be proven that
the set of fixed points must be an autoparallel, two-dimensional timelike surface. This surface
is the axis of symmetry and will henceforth be denoted asW2 [2–5]. In previous standard
definitions the axis was assumed to be a two-dimensional surface [4, 5], but, as we have just
mentioned, this is necessarily so and therefore needs not be assumed as an extra requirement
in the definition of axial symmetry [2, 3].

Furthermore, it can be shown [2, 3] that the infinitesimal generatorEξ of the axial symmetry
is spacelike in a neighbourhood of the axis, and that the so-called elementary flatness condition
holds [2, 6], that is

∇ρ(ξαξα)∇ρ(ξβξβ)
4ξρξρ

∣∣∣∣
W2

−→ 1. (1)

This condition ensures the standard 2π -periodicity of the axial coordinate near the axis.
Further fundamental results concern the relation of the Killing vectorEξ with other vector

fields, and in particular with different isometry generators. We refer to [2–5] for proofs.

Theorem 1. Let Ev be a vector field in an axisymmetric spacetime andq ∈ W2.

(a) Ev|q is tangent to the axis atq iff [Ev, Eξ ]|q = 0.
(b) Ev|q (6= 0) is normal to the axis atq iff Ev|q and [Ev, Eξ ]|q are linearly independent vectors

and[[ Ev, Eξ ], Eξ ]|q depends linearly on the previous vectors.
(c) Ev is neither tangent nor normal to the axis atq iff Ev|q , [Ev, Eξ ]|q and[[ Ev, Eξ ], Eξ ]|q are linearly

independent vectors and[[[ Ev, Eξ ], Eξ ], Eξ ]|q depends linearly on the previous two.

Theorem 2. In an axially symmetric spacetime, ifEλ is a Killing vector field tangent to the axis
of symmetry for allq ∈ W2, then

[Eξ, Eλ] = 0.

Proposition 1. In an axisymmetric spacetime, letEλ be a Killing vector field which does not
commute withEξ . If at some pointq of the axisEλ|q is not normal toW2, then there always
exists another Killing vector field given byEλ+[[Eλ, Eξ ], Eξ ] that commutes withEξ , and is therefore
tangential to the axis.
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It should be noted that all of the above results also apply to conformal Killing vector fields
[2, 3].

Let us next consider the definition of cylindrical symmetry. In addition to the existence of
two spacelike Killing vector fields,Eξ andEη, one of which, sayEξ , is taken to generate an axial
symmetry, it has usually been assumed that both Killing vectors commute and that theG2 acts
orthogonally transitively. With regard to the assumption of commutativity, from proposition 1
it is clear that the existence of a Killing vector field that is not orthogonal toW2 at some point
would suffice. However, not even this assumption is actually necessary due to the following
result.

Proposition 2. In an axially symmetric spacetime, if there is another Killing vectorEλ which
generates withEξ aG2 group, then both Killing vectors commute, thus generating an Abelian
G2 group.

Proof. If Eλ|q is not orthogonal to the axis for a given pointq ∈ W2, then from proposition 1
we have that the vector fieldEλ + [[Eλ, Eξ ], Eξ ], which belongs to the sameG2 group, commutes
with Eξ , leading to an AbelianG2 group. Suppose then thatEλ is orthogonal toW2 at all its
points. From theorem 1 point (b) it follows that another independent Killing vector field given
by Eλ′ ≡ [Eξ, Eλ] exists; but this leads to a contradiction because we are under the assumption
thatEξ andEλ generate a group of isometries. �

The assumption on the existence of 2-surfaces orthogonal to the group orbits (see, for
instance, [1, 6–8]) is not necessary for the definition of cylindrical symmetry or a consequence
of it, as we will see in an explicit example below, although its justification would come
mainly from three different sorts of reasons. The first one concerns the invertibility of theG2

group, which is equivalent to its orthogonal transitivity [9]. The second corresponds to the
considerations given by Melvin [7, 8] about the invariance under reflection in planes containing
the axis and perpendicular to it (this is used explicitly in the definition of the whole cylindrical
symmetry, that is, such thatEξ andEη are also mutually orthogonal). This is, in fact, equivalent
to demanding the invertibility of each of the one-parameter subgroups forming the AbelianG2,
and thus it is a particular case of the first assumption. The previous reasoning is geometrical
in nature, while the third is based on results concerning the form of the Ricci tensor for some
interesting material contents, such as3-terms (including vacuum) and perfect fluids whose
velocity vectorEu is orthogonal to the group orbits, since in those cases it can be shown (see
[5, 6, 9]), on account of the vanishing ofEξ atW2, that orthogonal transitivity follows.

The possible definition for cylindrically symmetric spacetimes, avoiding complementary
assumptions, could thus be:

Definition 2. A spacetime(V, g) is cylindrically symmetric if and only if it admits aG2 onS2

group of isometries containing an axial symmetry.

The line-element of cylindrically symmetric spacetimes corresponds then to that of the Abelian
G2 onS2 spacetimes [10], since this definition automatically implies that theG2 group must
be Abelian as follows from proposition 2 above. Orthogonal transitivity is then left as an extra
assumption, taking into account that, as was already mentioned, it follows directly in some
important cases from the structure of the Ricci tensor and the existence of an axis.

The above definition is inspired by the intuitive idea of cylindrically symmetric spacetimes
as those containing spatial cylinders, which are justS1×V1 spacelike surfaceswith a flat metric.
Here, byV1 we mean any ofS1 orR spaces, that is, we consider not only a spatially infinite axis
of symmetry, but also a spatially finite axis which may appear (as in a closed RW geometry).
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Notice that theseS1× S1 surfaces arenotstandard toruses since the first fundamental form of
a standard torus is non-flat.

Non-orthogonally transitive AbelianG2 onS2 spacetimes with an axial symmetry (metrics
of types A(i) and A(ii) in Wainwright’s classification [10]) must be considered as cylindrically
symmetric as they contain a two-parameter family of embedded spatial cylinders. A well
known explicit example is given by the dust spacetime with line-element (equation (20.13) in
[6])

ds2 = e−a
2ρ2(

dρ2 + dz2
)

+ ρ2 dϕ2 − (dt + aρ2 dϕ
)2
, (2)

which belongs to the van Stockum class of stationary axisymmetric dust spacetimes [11],
whoseG2 onS2 group is non-orthogonally transitive. The fluid flow (tangential to∂/∂t) is not
orthogonal to the group orbits, as otherwise the orthogonal transitivity would follow necessarily
from the perfect-fluid form of the Ricci tensor and the existence of the axis of symmetry (see
above). The spacelike character of the axial Killing vector is ensured in a region around the
axis. The spacetime can then be matched to a static vacuum metric [6]. The surfaces given
by {t = constant, ρ = constant} constitute the two-parameter family of embedded spatial
cylinders, which are rigidly rotating around the axis of symmetry (ρ = 0).

This situation regarding the orthogonal transitivity in cylindrical symmetry is clearly in
contrast with the case of spherical symmetry, where the existence of surfaces orthogonal to
the group orbits is ensuredgeometrically[6, 12].

3. Stationary and static cylindrically symmetric spacetimes

Once we have discussed cylindrical symmetry, we can proceed further and study the definitions
of both stationary and static cylindrically symmetric spacetimes. Stationarity implies the
existence of an additional isometry which is generated by a timelike Killing vector field (that
is integrable in the static case). The first consequence is that, since a timelike vector field
cannot be orthogonal toW2 anywhere, proposition 1 and theorem 2 imply the existence of
a Killing vector Eζ such that [Eξ, Eζ ] = 0 which can be checked to be timelike in the region
where the original one was timelike [2, 4, 5]. Therefore, at this stage, we have that the group
structure of stationary cylindrically symmetric spacetimes is aG3 on T3 group of isometries
generated by two spacelike Killing vectorsEξ andEη, and a timelike Killing vectorEζ†, such that
Eξ commutes with bothEη andEζ ,

[Eξ, Eη] = 0, [Eξ, Eζ ] = 0. (3)

In the static case we must further impose the existence of an integrable timelike Killing
vectorEs. It should be noticed that in the static case,Es does not necessarily coincide withEζ in
principle.

Notice that the definition of stationary cylindrically symmetric spacetimes which appears
in [6] includes the extra assumption [Eη, Eζ ] = 0, apart from the orthogonal transitivity on theG2

onS2 assumed in the definition of cylindrical symmetry in this reference. However, as we will
see later in the next section, the assumption [Eη, Eζ ] = 0 together with orthogonal transitivity
of theG2 on S2 subgroup implies, in fact, staticity. Therefore, in order to look for actual
stationary (non-static) models of these characteristics, one of the two extra assumptions must
be dropped.

As a matter of fact, in [6] the extra assumption [Eη, Eζ ] = 0 is maintained instead of the
orthogonal transitivity on theG2 onS2 subgroup, stating essentially that (the phrasing is ours)

† Although the existence of such a timelike Killing vector field in a spacetime with aG3 onT3 is not ensured globally,
it is certainly true in some open neighbourhood of any given point.
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‘stationary cylindrically symmetric spacetimes are those admitting an AbelianG3 onT3 group
of isometries containing aG2 on S2 subgroup with an axial symmetry’. Of course, this is
not coherent with the assumption of orthogonal transitivity in the definition of cylindrical
symmetry that appears in the same reference. Indeed, the metric (2) is presented in [6] as an
example of stationary cylindrically symmetric spacetime, although itsG2 onS2 group does not
act orthogonally transitively. Let us remark that the metrics appearing in section 20.2 of [6],
which are presented as stationary cylindrically symmetricvacuumsolutions, also possess aG2

onS2 which is not orthogonally transitive, but this necessarily implies that the axial symmetry
cannot be well defined in thesevacuumspacetimes, as we have mentioned in the previous
section. Nevertheless, all these vacuum examples could be matched to another cylindrically
symmetric spacetime with the axis included, which would then be considered as the source
of the exterior vacuum spacetime, so that the axis of symmetry would not be present in the
vacuum region.

In the next section we will focus on the assumption that theG2 on S2 acts orthogonally
transitively, which will give some results concerning the group structures and the form of the
line-elements. This study also has a clear motivation, since in some relevant aforementioned
cases (including vacuum) this assumption is a direct consequence.

4. Stationarity, staticity and orthogonal transitivity in cylindrically symmetric
spacetimes

Let us now assume thatEξ and Eη generate an Abelian subgroupG2 whose orbitsS2 admit
orthogonal surfaces, i.e.

ξ ∧ η ∧ dξ = 0, ξ ∧ η ∧ dη = 0.

It is straightforward to show that there are four non-isomorphic algebraic structures for theG3

group generated by{Eξ, Eζ , Eη} satisfying (3) [2, 3, 13–16], and taking into account thatEξ vanishes
on the axis, the remaining commutator can then be expressed, in each case and without loss of
generality, as

(a) Abelian case: (Bianchi I) [Eη, Eζ ] = 0;
(b) case I: (Bianchi III) [Eη, Eζ ] = bEζ ;
(c) case II: (Bianchi III) [Eη, Eζ ] = cEη;
(d) case III: (Bianchi II) [Eη, Eζ ] = dEξ ,

whereb, c andd are constants. Some of these constants could have been set equal to 1 by
conveniently rescaling the Killing vectors, but we choose not to do so because they can carry
physical units. Notice that the above algebraic structure does not depend on the timelike or
spacelike character of the Killing vector fieldEζ . Now, taking into account thatEξ and Eη span
a subgroup which acts orthogonally transitively and using the fact that we want theG3 group
acting onT3, so that the projection of the globally defined Killing vector fieldEζ onto the
surfacesorthogonalto the orbits generated by theG2 subgroup{Eξ, Eη} is necessarily timelike,
it follows that we can choose coordinates{t, x, ϕ, z} such that

Eξ = ∂

∂ϕ
, Eη = ∂

∂z
, (4)

and the line-elements for each of the above algebras can then be written as follows (see [3, 13–
16]).
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Abelian case. The line-element is given by

ds2 = 1

S2(x)

[
−dt2 + dx2 +

Q2(x)

F (x)
dϕ2 + F(x)(dz +W(x) dϕ)2

]
, (5)

whereS, Q, F andW are arbitrary functions ofx and the Killing vectorEζ has the following
expression:

Eζ = ∂

∂t
.

In this case we can chooseEζ = Es becauseEζ is already an integrable timelike Killing vector
field and thus we have a static cylindrically symmetric spacetime. This indirectly proves the
following:

Proposition 3. Given an AbelianG3 onT3 containing a subgroupG2 onS2 acting orthogonally
transitively, there always exists an integrable timelike Killing vector field.

This applies, in fact, forG2 onV2 and an additional conformal Killing vector field with
the ‘opposite’ character [3, 16]. Therefore, we have

Corollary 3.1. A (non-static) stationary spacetime cannot contain an orthogonally transitive
AbelianG2 onS2 subgroup whenever theG3 group containing these symmetries is Abelian.

Case I. The line-element now takes the form

ds2 = 1

S2(x)

[−dt2 + dx2 + b2M2(t) dz2 +L2(x)(dϕ + bN(t) dz)2
]
,

whereM andN are functions oft satisfyingM2
,t = 1 +αM2 with M,t 6= 0,N,t = ωM, α, ω

are constants, andL is an arbitrary function ofx. The Killing vectorEζ reads

Eζ = ebz
(
−1

b

M,t

M

∂

∂z
+

(
N
M,t

M
− ωM

)
∂

∂ϕ
+
∂

∂t

)
. (6)

This vector field is timelike ifα +L2ω2 < 0.

Case II. In this case the line-element has the following expression:

ds2 = 1

S2(x)

[
−dt2 + dx2 +

Q2(x)

F (x)
dϕ2 + F(x)

(
e−ct dz +W(x) dϕ

)2]
,

and we have then

Eζ = cz ∂
∂z

+
∂

∂t
,

which is timelike wheneverc2z2Fe−2ct − 1< 0.
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Case III. The line-element now reads

ds2 = 1

S2(x)

[
−dt2 + dx2 + F(x) dz2 +

Q2(x)

F (x)
(dϕ + (W(x)− td) dz)2

]
,

andEζ is given by

Eζ = zd ∂
∂ϕ

+
∂

∂t
,

being timelike in the regionz2d2Q2 − F < 0.
The only cases in which the timelike character of the Killing vectorEζ is ensured all over

the spacetime are the Abelian case and also in case I, once the functionL(x) has been chosen
appropriately.

In order to see whether or not a globally defined timelike Killing vector field exists in the
non-Abelian cases, we consider a general Killing vectorEs not contained in theG2, i.e.

Es = Eζ +AEξ +B Eη, (7)

whereA andB are arbitrary constants, and compute its modulus in each case. It follows:

case I: (Es · Es) = 1

S2

{
e2bzM2(α +L2ω2)− 2Mebz

[
AωL2 +Bb

(
ωNL2 +M,t

)]
+L2(A + bBN)2 +B2b2M2

}
case II: (Es · Es) = 1

S2

{
−1 +A2Q

2

F
+ F

(
czect +AW

)2}
,

case III: (Es · Es) = 1

S2

{
−1 +B2F +

Q2

F
(zd +B(W − td))2

}
.

(8)

From the above expressions it can immediately be seen that in cases II and III, and for any
given functions ofx and constantsA andB, we can reach points where(Es · Es) > 0 whenever
the coordinatez can reach any value in(−∞,∞). Therefore, stationary spacetimes with a
globally defined timelike Killing vector field whose axis of symmetry extends indefinitely in
thez-coordinate can only exist in the Abelian case or in some situations of case I.

Let us next investigate the existence of integrable Killing vectors in cases I–III. If one
such vector field outside theG2 group exists,Es, it must be of the form given by (7) although
it will not be supposed to be timelikea priori. The 1-forms has the following form, common
to all three cases:S2(x)s = s0(z) dt + s2(t, x, z)dϕ + s3(t, x, z)dz with s0 6= 0, so that the
conditions ∧ ds = 0 gives the following three equations:

s2,x = s3,x = 0, s0s2,z + s2(s3,t − s0,z)− s3s2,t = 0. (9)

Let us impose these conditions on each of the cases under study.

Case I. Equations (9) imply firstL,xω = 0. If we takeω 6= 0⇒ L = L0 (constant), but
since the axis of symmetryW2 is given by those points for whichL(x) = 0, it follows that
L0 = 0 which is inconsistent with the dimension of the spacetime, therefore it must beω = 0.

As ω = 0 ⇒ N = N0 (constant), but in that case it is easy to see that the coordinate
changeϕ + bN0z 7→ ϕ, which preserves the form of the axial Killing, renders the metric in
diagonal form,

ds2 = 1

S2(x)

[−dt2 + b2M2(t) dz2 + dx2 +L2(x) dϕ2
]
,
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which can be further transformed by suitably redefining the coordinatex to the form

ds2 = 1

S2(x)

[−dt2 + b2M2(t) dz2
]

+ dx2 +L2(x) dϕ2,

which is that of a (class B) warped spacetime (see [17]) and can be easily seen to admit a larger
group of isometries: at leastG4 onT3. In this case, equations (9) readily implyA = 0, and a
calculation of the modulus ofEs, gives

(Es · Es) = 1

S2

{−e2bz +
(
M,te

bz −MbB)2};
thus, for spacetimes whose range for thez coordinate is not bounded, we have(Es · Es) > 0 when
bz→ −∞ unless we setB = 0, and therefore we haveEs = Eζ which is timelike in the whole
manifold iff α < 0.

Therefore, the existence of a (timelike) integrable Killing vector implies, for this class
of spacetimes, the existence of (at least) aG4 on T3 group of isometries which contains the
original G3 on T3, as well as a subgroupG3 acting on timelike two-dimensional orbits of
constant curvature.

It is easy to see that the Segre type of the Ricci (or Einstein) tensor is{(1, 1)11} or some
degeneracy thereof, whereas the Petrov type of the Weyl tensor is, in general,D.

Case II. A shift in the coordinatez allows us to putB = 0 without loss of generality.
Equations (9) implyA = W = F ′ = 0, so thatEs = Eζ and the metric can then be written as:

ds2 = 1

S2(x)

[−dt2 + exp(−2ct) dz2
]

+ dx2 +Q2(x) dϕ2,

where thex coordinate has been redefined in an obvious way. It then follows that this is again
a type-B warped spacetime which admits a groupG4 on T3 of isometries which contains the
G3 onT3, and also as in the previous case, a subgroupG3 acting on timelike two-dimensional
orbits of constant curvature.

As in case I, the Ricci tensor is of the Segre type{(1, 1)11} or some degeneracy thereof,
and the Weyl tensor is typeD.

Case III. Analogously to the previous case, we can putA = 0 without loss of generality.
In this case, however, equations (9) implyd = 0, which leads to the Abelian case, thus no
timelike integrable Killing vector exists in this group. As a matter of fact, what we have just
proven is slightly more general than this; we summarize the results in the following.

Proposition 4. Given aG3 on T3 group of Bianchi type II having an AbelianG2 subgroup
acting orthogonally transitively and containing an axial Killing vector, then the only integrable
Killing vectors in this group belong to the subgroupG2.

This result can also be obtained for a conformal groupC3 containing aG2.
The definition of stationary (or static) cylindrically symmetric spacetimes has been based

on that for cylindrically symmetric spacetimes. If, on the other hand, we had started with
the usual definition of stationary axisymmetric spacetimes [6], we could have imposed that
the timelike Killing vectorEs and the axial Killing vectorEξ generate aG2 on T2 group acting
orthogonally transitively (for non-convective rotating fluids [18, 19], see for instance [20]), and
the allowed Lie algebra structures would then be those four discussed previously. Nevertheless,
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it can be shown that the imposition of orthogonal transitivity on the orbits generated byEs and
Eξ gives no further restriction in thestaticnon-Abelian cases. The conditions

ξ ∧ s ∧ dξ = 0, ξ ∧ s ∧ ds = 0 (10)

applied to each of the algebraic cases give

Abelian case: 2(F ′Q− FQ′)QW − (F 2W 2 −Q2)W ′F = B(F ′Q2 −W ′F 3W) = 0

case I: automatically satisfied

case II: W ′Q2 + F 2W 2W ′ − 2WQQ′ = F ′Q2 −W ′F 3W = 0

case III: W ′ = BF ′ = 0.

Clearly, the conditions for the existence of a timelike integrable Killing vector in case II (which
turns out to beEζ ) imply that the orbits generated byEs andEξ admit two-dimensional orthogonal
surfaces as well as the existence of (at least) a fourth linearly independent Killing vector which,
along with the previous three, generates a groupG4 on orbitsT3.

Therefore, the assumption (10) gives no further restrictions in the non-Abelian cases,
neither when imposing a timelike integrable Killing in a geometrical sense (i.e. including
case II), nor in the stationary case (when cases II and III could be avoided).

All of the above can be summarized in the following.

Theorem 3. Given aG3 on T3 group that contains an orthogonally transitive AbelianG2

subgroup generated by an axialEξ and Eη, then it follows:

(a) If G3 is the maximal isometry group, then it must be Abelian.
(b) If G3 is non-Abelian, then it is (locally) contained in aG4 on T3, andEξ and Eζ generate

an orthogonally transitive subgroupG2 onT2.

Notice that, in addition, in these non-Abelian cases there exist two-dimensional timelike
surfaces of constant curvature, the Segre type of the Ricci tensor is{(1, 1)11} or some
degeneracy thereof, and the Petrov type is, in general, D.

5. Conclusions

Let us briefly summarize the main points and results of this paper. The definition of cylindrical
symmetry as given in standard reference texts (see, e.g., [6] and section 2) has been analysed
critically. Given that axial symmetry is an essential prerequisite, andassumingthat (at least
part of) the axis is present in the spacetime, we can use the proper definition of axial symmetry
as appearing in [2–5]; that is, a one-parameter isometry group with closed orbits whose set of
fixed points, or axis, isnon-empty.

Under these hypotheses, we show (see proposition 2) that the assumption of commutativity
of the two Killing vector fields of a cylindrically symmetric spacetime is superfluous, since it
follows from the existence of aG2 containing an axial symmetry. We next argue that orthogonal
transitivity is neither necessary for, nor a consequence of, a sensible definition of cylindrical
symmetry, even though it arises quite naturally in a wide range of situations of interest in
relativity. We illustrate this point with an explicit example. As a result of the foregoing
discussion, we put forward a new definition of cylindrical symmetry, see definition 2, as that
implied by the mere existence of aG2 onS2 group of isometries containing an axial symmetry,
without any further restrictions.

In section 3, we address the problem of stationarity and staticity in cylindrically symmetric
spacetimes. Again, we review the definition given in [6], showing that it is not fully consistent
with that of cylindrical symmetry in the same reference. Here the problem arises because in
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the original definition of [6] orthogonal transitivity was assumed, but then it is tacitly dropped
without mention. Actually, in section 4 we prove that the addition of orthogonal transitivity
implies, in fact, staticity, so that therecannotbe any stationary (non-static) cylindrically
symmetric spacetime with an orthogonally transitiveG2 onS2.

More specifically, section 4 is devoted to the case of stationary and cylindrically symmetric
spacetimes where theG2 on S2 acts orthogonally transitively, as happens in many situations
of physical interest, see the remarks at the beginning of this section. We classify the possible
three-dimensional Lie algebra structures into four different types, and show (see theorem 3)
that under these assumptions, if theG3 is the maximal isometry group of the spacetime, then
it must be Abelian and the spacetime is, in fact, static; and also that if theG3 is non-Abelian,
then it is locally contained in aG4 which acts on the same orbitsT3 as theG3. These orbits
contain in turn two-dimensional timelike surfaces of constant curvature, and the isotropy then
imposes restrictions on the Petrov and Segre types.
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