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RESUMEN
Introducimos la nocidén de UOSD-multiplicidad de
una proyeéct&idn.P relativa a una medida espectral E(.)
con la CG3-propiedad y la comparamos con la nocidn de
multiplicidad introducida por Halmos LZ]. También se

dan varias caracterizaciones para que una medida espec

tral tanga la GGS-propiedad.

ABSTRACT
We introduce the notion of UOSD-multiplicy of a pro-

jection P relative to a spectral measure E(.) with the
CGS-property and compare it with the notion of multiplicy
introduced by Halmos [2]. Also are given some characteri-

zations for a spectral measure to have the CGS-property.

In our earlier work [4] we introduced the notion of
ordered spectral decomposition (0SD, in abbreviation) of a

Hilbert space relative to a spectral measure E(.) and defi-

Supponted by the C.D.C.H projects C-S-149,150 o4 the Univern
sidad de Los Andes.
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ned the 0SD-multiplicity of a projection P commuting with
E(.). Here we introduce the concepts of uniform 0SD and
UOSD-multiplicity and compare the concept of multiplicity
in Halmos |2] with the 0SD and UOSD-multiplicities. Also
we obtain various characterizations for a spectral measure

to have the CGS-property.

.PRELIMINARIES. 1In this section we fix the terminology- and
notations and give some definitions and results from the

literature which are needed in the sequel.

S denotes a c-algebra of subsets of a set X(#¢). H
is a (complex) Hilbert space and E(.) is a spectral measu-
re on $ with values in projections of H. The closed subs-
pace generated by a subsetgof H 1is denoted by [9c]. For
a vector x e H, Z(x) = [E(o)x: o ¢ S]._Z @ M, denotes the
orthogonal direct sum of the subspaces &idof some Hilbert

space.

W dis the Von Neumann algebra generated by the range
of E(.) and W' is the commutant of W. If W' =3 § W'Q,
is the type In direct sum decomposition of W', then the
central projections Qn( # 0) are unique (such that W'Q,
is of type In) and in the sequel Qn will denote these
central projections. For x e H, [Wx] = [Ax: A e W] and,
sometimes, also denotes the orthogonal projection with the
range [Wx]. For a projection P'e W', Cp, denotes the cen-

tral support of P'. Other terminology in VYon Neumann al-



gebras is standard and we follow Dixmier [1].

As was observed in [5] a projection P' in W' is abe-
lian if and only if P' is a row projection in the sense

of [2] and the column C(P') generated by P'as in [2] is

the same as CP..

NOTATION 1.1. Let P be a projection in W. The multipli-
city (respy. uniform multiplicity) of P in the sense of
Halmos [2] will be referred to as its H-multiplicity (respy.

UH-multiplicity) relative to E(.).

As was noted in [5] Theorem 64.4 of Halmos [2] can be

interpreted as folilows:

THEOREM 1.2. A non-zero projection F in W has UH-multi-
plicity n 1if and only if there exists an orthogonal fa-
mily {E&}aed of abelian projections in W' such that card.
J=mn, Cpv = F and ¢ E& = F. In other words, F has UH-

a

oed
multiplicity n 1if and only if W'F is of type In.

Consequently, the following proposition is immediate.

PROPOSITION 1.3. A non-zero projection P in W has UH-

multiplicity n if and only if P < Qn

DEFINITION 1.4. E(.) is said to have the CGS-property
(i.e. countable generating set property) in H if there

exists a countable set9c in H such that [E(o)x: o €S ,xeXx]=H.
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Let p(x) = HE(.)xlIz. Then p(x) is a finite measure
on S. We say that p(xz) is absolutely continuous with
respect to p(x;) and write o(x,) << p(x;) (or p(xq)>> p(x,))

if o(x;)(6) =0 implies p(x,)(0) = 0.

DEFINITION 1.5. Let {x;}] , N ¢ IN y{=}, be a countable
set of non-zero vectors in H such that (i) H = g o) Z(xi)
1 -

PRy

and (ii) p(xl) >> p(XZ) >>... Then we say that

(
N

H=13:8 Z(Xi) is.an 0SD of H vrelative to E(.).
1

The cardinal number N e IN IJYUO in the above defini-
tion is uniquely fixed by E(.) and is called the 0SD-mul-
tiplicity of E(.). If P 1is a projection commuting with
E(.) and . PE(.) has the CGS-property in H, then the 0SD-
multiplicity of . PE(.) is called the 0SD-multiplicity of
P. Besides, it has been shown in [4] that E(.) has the
CGS-property in H if and only if H has an 0SD relati-

ve to E(.).
2. UOSD-MULTIPLICITY OF PROJECTIONS.

We introduce the concepts of UOSDs and UOSD-multipli-
city relative to a spectral measure E(.) with the CGS-pro-
perty in H and show that for a projection P in W the
U0SD-multiplicity and the UH-multiplicity are one and the

same. when P is countably decomposable in W.

DEFINICION 2.1. An O0SD H = ® Z(Xi) relative to E(.)

—MZ2Z
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is said to be a uniform 0SD(UOSD, in abbreviation) of H
if p(xl) = p(xz) = ...., where y = v if p << v and

v << .

. The following proposition is immediate from Theorem

1.(41i) of [4].

RROPOSITION 2.2. If H has a UOSD relative to E(.), then
all the 0SDs of H vrelative to E(.) are UOSDs.

DEFINITION 2.3. If H has a UOSD relative to E(.) then
the UOSD-multiplicity of E(.) is defined to be the same as
its OSD-multiplicity. If P 1is a projection of H com-
muting with E(.) and if P E(.) has UOSD-multiplicity n,
then we say that P has UOSD-multiplicity n relative to
E(.).

The following simple example shows that, in general,
the 0SD-multiplicity and H-multiplicity of a projection P
relative to E(.) are not the same even though H is finite

dimensional.

EXAMPLE. 2.4. lLet H =1¢€", S = {¢, {Al}, {AZ}, {Al, AZ}},
Ai» Ay e € Ap A, and E(.) be a spectral measure on
S given by E({x;})H= [e;.e,] and E({i,}) H = [eg.eq0e] s
where ej = (1,0,0,0,0), e, = (0,1,0,0,0), etc. Since

any maximal orthogonal family of row projections (in the

sense of Halmos [2]){E'} in W' with Cp., = I consists
¢4
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of just two members, the H-multiplicity of I is 2. On the

other hand, if xl = ey + €35 X, = e, + ey and X3 = €gs then

3 .
H = % o) Z(xi) is an 0SD of H since p(xl) = p(X2)>> p(x3).
Thus the 0SD-multiplicity of I is 3.

The following result is well-known in the theory of
Von Neumann algebras, whose proof is indicated also on p.108
of [2]. Using this result we compare the UH-multiplicity

and UOSD-multiplicity of a projection.

LEMMA 2.5. Let P' be an abelian projection in W'. If

the central support C,, of p' is countably decomposabie ' in

P ]
W, then P' is cyclic.

THEOREM 2.6. Let P be a countably decomposable non-zero
projection in W'. Then P has UH-multiplicity N < fdo
if and only if P has UOSD-multiplicity N (relative to
E(.)).

PROOF. Suppose the UH-multiplicity of P is N < f\f .

Then by Theorem 1.2 there exists an orthogonal family

{Pj}jeJ of abelian projections in W' such that card. J=N,

CP. =P and P =3% P.. Let J = 1{1,2,...,N}. By Lemma
" jed J
2.5 there exists x,ePj H such that P} = |yxj], jed.
- N
Thus PH = = § |[Wx.] = 2 ® Z(x;). Besides, by Theorem
jed = J j=1 J

66.2 of [2] , C(p(xj)) = c|:jo]= CPJ'- = P for all j. There-
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fore, by Theorem 65.2 of [2] , p(Xj) = p(xj.) for Jj,j'e J.

Hence the condition is necessary.

Conversely, if P has UOSD-multiplicity N, then
N
clearly N < QSO. Let PH =1 @ Z(x1)~be an 0SD of PH rela-
- 1

1Y

tive to PE(.). Then by Proposition 2.2, p(xl) = p(XZ),
Consequently, by Theorem 66.2 of [2] we conclude that
N - -
Cri = Cp =,.. = say). Clearly, P = 3% |[Wx,| < Q.
[x,] [Wx,] Qlsay) Y i Wx;] < Q
As P e W, |]x1] < C[WX.] = P so that Q = P. Since each
i
{Wxil is an abelian projection in W' by Theorem 60.2 of [2],

from Theorem 1.2 it follows that P has UH-multiplicity N.
3. SOME CHARACTERIZATIONS OF THE CGS-PROPERTY.

In terms of the existence of 0SDs and OSRs of H the
CGS-property of a spectral measure E(.) is characterized in
[4]. The following Theorem gives some more characteriza -

tions of this property,

THEOREM 3.1. Let E(.) be a spectral measure on 8 with va-
lues in projections of H. Then the following statements

are equivalent.

(i) Every projection of UH-multiplicity N in W s

countably decomposable in W and n < hSo.

(ii) The projections Qn are countably decomposable in W

and Qn = 0 for n > “So'
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(ii1) Every projection in W is countably decomposable in W

and has H-multiplicity n < hSo‘

(iv) Every projection of UH-multiplicity in W is counta-

bly decomposable in W'.
(v) The projections Q  are countably decomposable in W'.

(vi) Every projection in W is countably decomposable inW'"

-

(vii) Every non-zero projection of UH-multiplicity in W

has UOSD-multiplicity (and hence they are equal).

(viii) E(.) has the CGS-property in H.

PROOF.

(i) =>(ii) Let Qn # 0. Then by Proposition 1.3, Q, has
UH-multiplicity n. Therefore, (ii) is immedia- -

te from (i).

(ii)=>(iii) If P 1is a non-zero projection in W, then by

(ii) P = P. Being Qn countably de-

z Q
n<®, n
composable in W, it follows that the same is
true for P. Then the H-multiplicity of P

= min {n: PQ  # 0} <, by Theorem 64.2 of

'?] and by Proposition 1.3.

(iii) =>(iv) Let P be a non-zero projection of UH-multi-

plicity n. By (iii), n 5.9&0. By Theorem 1.2
n
1

there exists an orthogonal family {Ei} of



(iv)=>(v)

(v)=—>(vi)

(vi)==>(vii)
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abelian projections in W' such that P = E

=M S

i
and CE% = P for all i. Now by (iii) and Lemma
2.5 there exist vectors X ; in PH such that
[Wx;]1 = E}. 1f2C= {Xi}q » then clearly

PH = [WDC] so that by Lemma 3.3.9 of [3] P s

countably decomposable in W'.

This is immediate, since Q has WHmultiplicity

n by Proposition 1.3.

Let P be a non-zero projection in W. Then

P =z p Q, and by (v) Q, are countably decom-
n<dimH

posable in W'. To prove that P is countably
decomposable in W', it suffices to show that

Q, = 0 for n>N . 1f Q #0,as Q. has
UH-multiplicity n by Proposition 1.3, there exists

an orthogonal family {Ea}ued of abelian projec-

n
tions in W' such that card. J_=n, Q_ = I E'
n n o

aeJn
and CE' = Qn. As Qn is countably decomposable

in W', it follows that Jn is countable so that

n < “So’ Consequently, Q_ =0 for

n
0> 0,

Let P be a non-zero projection of UH-multipli-
city n. By (vi) P is countably decomposable
in W' and hence in W. By Proposition 1.3, the-

re exists a unique Qn such that P < Qn‘ As
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in the proof of (v)=>(vi) we note that Q =0
for k >§$0 and hence n <% . Consequently, by
Theorem 2.6, (vii) holds.

(vii)=>(viii) By Proposition 1.3 Q, has UH-multiplicity n if
Qn # 0. Then by (vii), n ifuo if Qn # 0 and
hence Qn = 0 for n >Yﬁ0. Again by (vii) as
Q, has UOSD-multiplicity n for ne JO = {n:Qh # 0}

there exists an orthonormal set {an}n in
j=1

nji 9 €S, j=1,2.4n7.

nj? n ¢ Jo, j=1,2,...,n]

and hence (viii) holds.

Q, H such that Q_H = [E(c) x

Therefore, H = [E(o) x

(viii)=>(i) By (viii) and by Lemma 3,3,9 of [3] W' is counta-
bly decomposable and hence W is countably decom-
posable. Besides, evidently for every pro-
jection P of UH- multiplicity n in W, n <8 .
Thus (i) holds.

4. COMPARISON BETWEEN OSD-MULTIPLICITY AND H-MULTIPLICITY.

Example 2.4 is just a particular case of the following

more general result.

THEOREM 4.1. Suppose E(.) has the CGS-property in H. Let
P be a non-zero projection in W with the H-multiplicity n

and with the 0SD-multiplicity (relative to E(.))N. Then:

(1) n < N.
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]

(i1) n N if and only if P has UH-multiplicity n.

I

(iii) n N if and only if P has UOSD-multiplicity n (re-

lative to E(.)).

PROOF. By Theorem 62.4 of [2] there exists a non-zero pro-
Jjection Q in W such that Q < P and such that Q has UH-mul-
tiplicity n. Besides, by Theorem 3.1, Q is countably decom-
posable in W and "-59“0' Therefore, by Theorem 2.6 Q. has
the UOSD-multiplicity n relative to E(.). Consequently, by
Theorem 5. of [4] the total multiplicity of Q s n and

therefore, n < N.

(ii) Suppose n = N. We discuss the following two cases.

Case 1. n 1is finite.

By hypothesis, there exists a maximal orthogonal fa-
mily {E%}? of abelian projections in W' such that
CE% = P for all i. If P doez not have UH-multiplici-
ty then by Theorem 2.2 P # % E%. Now, by Theorem
3.1 (iii) and Lemma 2.5 there exist vectors X; € PH
such that E% ==|yxi] ,» 1=1,2,...,n. Then by Theo-
rems 66.2 and 65.2 of [ 2] we have p(xl) E;ﬂxz) =
=...= p(Xn). Let E' = % E%. Clearly, E' ¢ W' and
E'H. = % 0] Z(xi) is a UOSD of E'H relative to E(.)E".
If x € (P-E') H and x # 0, then [Wx] = Z(x) L E'H
and C[WX]f P = (Wyxlj. Consequently, by Theorem

65.2 of [2] we conclude that p(x) << p(x;). On the
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other hand, by Theorem 1 of [4] there exists an 0SD: (P-E')H=

= %1 0] Z(xi), £ e IN yle}, of (P-E') H relative to E(.)(P-E')
n+

£
so that PH =z @ Z(Xi) is an 0SD of PH relative to
' 1
E(.)P . Thus £ = N and P has O0SD-multiplicity N > n.

This contradiction proves that P has UH-multiplicity n.

Case 2. n is infinite.

Due to Theorem 3.1, n =§“0 and Ok = 0 for k >Sﬂo. Since

P = z PQZ"= X PQK and since“the H-multiplicity of P
£<dimH L<ss,,

is &SO and is given by min{¢ : PQ, # 0}, we have PQ,

0
for £ #SLSO. Thus P < Qg and hence P has UH-multipli-

city §§ o by Proposition 1.3.
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