NOTAS DE MATEMATICAS Nº 91

UNIFORM ORDERED SPECTRAL DECOMPOSITIONS

BY

T.V. PANCHAPAGESAN

UNIVERSIDAD DE LOS ANDES
FACULTAD DE CIENCIAS
DEPARTAMENTO DE MATEMATICA
MERIDA - VENEZUELA
1988

UNIFORM ORDERED SPECTRAL DECOMPO-SITIONS

T.V. PANCHAPAGESAN

UNIFORM ORDERED SPECTRAL DECOMPOSITIONS

BY

T. V. PANCHAPEGESAN

RESUMEN

Introducimos la noción de UOSD-multiplicidad de una proyección Prelativa a una medida espectral E(.) con la CGS-propiedad y la comparamos con la noción de multiplicidad introducida por Halmos [2]. También se dan varias caracterizaciones para que una medida espectral tanga la GGS-propiedad.

ABSTRACT

We introduce the notion of UOSD-multiplicy of a projection P relative to a spectral measure E(.) with the CGS-property and compare it with the notion of multiplicy introduced by Halmos [2]. Also are given some characterizations for a spectral measure to have the CGS-property.

In our earlier work [4] we introduced the notion of ordered spectral decomposition (OSD, in abbreviation) of a Hilbert space relative to a spectral measure E(.) and defi
Supported by the C.D.C.H projects C-S-149,150 of the Universidad de los Andes.

ned the OSD-multiplicity of a projection P commuting with E(.). Here we introduce the concepts of uniform OSD and UOSD-multiplicity and compare the concept of multiplicity in Halmos [2] with the OSD and UOSD-multiplicities. Also we obtain various characterizations for a spectral measure to have the CGS-property.

- 1. PRELIMINARIES. In this section we fix the terminology and notations and give some definitions and results from the literature which are needed in the sequel.
 - S denotes a σ -algebra of subsets of a set $X(\neq \phi)$. H is a (complex) Hilbert space and E(.) is a spectral measure on S with values in projections of H. The closed subspace generated by a subset \mathfrak{R} of H is denoted by $[\mathfrak{R}]$. For a vector $x \in H$, $Z(x) = [E(\sigma)x: \sigma \in S]$, $\Sigma \oplus M_i$ denotes the orthogonal direct sum of the subspaces M_i of some Hilbert space.

W is the Von Neumann algebra generated by the range of E(.) and W' is the commutant of W. If W' = $\Sigma \bigoplus W'Q_n$ is the type I_n direct sum decomposition of W', then the central projections Q_n ($\neq 0$) are unique (such that $W'Q_n$ is of type I_n) and in the sequel Q_n will denote these central projections. For $x \in H$, $[Wx] = [Ax: A \in W]$ and, sometimes, also denotes the orthogonal projection with the range [Wx]. For a projection $P' \in W'$, C_p , denotes the central support of P'. Other terminology in Von Neumann al-

gebras is standard and we follow Dixmier [1].

As was observed in [5] a projection P' in W' is abelian if and only if P' is a row projection in the sense of [2] and the column C(P') generated by P'as in [2] is the same as $C_{p'}$.

NOTATION 1.1. Let P be a projection in W. The multiplicity (respy. uniform multiplicity) of P in the sense of Halmos [2] will be referred to as its H-multiplicity (respy. UH-multiplicity) relative to E(.).

As was noted in [5] Theorem 64.4 of Halmos [2] can be interpreted as follows:

THEOREM 1.2. A non-zero projection F in W has UH-multiplicity n if and only if there exists an orthogonal family $\{E'_{\alpha}\}_{\alpha \in J}$ of abelian projections in W' such that card. J = n, $C_{E'_{\alpha}} = F$ and $\sum_{\alpha \in J} E'_{\alpha} = F$. In other words, F has UH-multiplicity n if and only if W'F is of type I_n .

Consequently, the following proposition is immediate.

PROPOSITION 1.3. A non-zero projection P in W has UH-multiplicity n if and only if P \leq Q $_{n}$.

DEFINITION 1.4. E(.) is said to have the CGS-property (i.e. countable generating set property) in H if there exists a countable set \mathfrak{C} in H such that $[E(\sigma)x: \sigma \in S, x \in \mathfrak{X}] = H$.

Let $\rho(x) = ||E(.)x||^2$. Then $\rho(x)$ is a finite measure on S. We say that $\rho(x_2)$ is absolutely continuous with respect to $\rho(x_1)$ and write $\rho(x_2) << \rho(x_1)$ (or $\rho(x_1) >> \rho(x_2)$) if $\rho(x_1)(\sigma) = 0$ implies $\rho(x_2)(\sigma) = 0$.

DEFINITION 1.5. Let $\{x_i\}_1^N$, $N \in IN \cup \{\infty\}$, be a countable set of non-zero vectors in H such that (i) $H = \sum\limits_{1}^{N} \bigoplus\limits_{1} Z(x_i)$ and (ii) $\rho(x_1) >> \rho(x_2) >> \ldots$ Then we say that $H = \sum\limits_{1}^{N} \bigoplus\limits_{1} Z(x_i)$ is an OSD of H relative to E(.).

The cardinal number $N \in IN \cup \mathcal{N}_0$ in the above definition is uniquely fixed by E(.) and is called the OSD-multiplicity of E(.). If P is a projection commuting with E(.) and PE(.) has the CGS-property in H, then the OSD-multiplicity of PE(.) is called the OSD-multiplicity of P. Besides, it has been shown in [4] that E(.) has the CGS-property in H if and only if H has an OSD relative to E(.).

2. UOSD-MULTIPLICITY OF PROJECTIONS.

We introduce the concepts of UOSDs and UOSD-multiplicity relative to a spectral measure E(.) with the CGS-property in H and show that for a projection P in W the UOSD-multiplicity and the UH-multiplicity are one and the same when P is countably decomposable in W.

DEFINICION 2.1. An OSD $H = \sum_{i=1}^{N} \Theta Z(x_i)$ relative to E(.)

is said to be a uniform OSD(UOSD, in abbreviation) of H if $\rho(x_1)\equiv\rho(x_2)\equiv\ldots$, where $\mu\equiv\nu$ if $\mu<<\nu$ and $\nu<<\mu$.

The following proposition is immediate from Theorem 1.(ii) of [4].

RROPOSITION 2.2. If H has a UOSD relative to E(.); then all the OSDs of H relative to E(.) are UOSDs.

DEFINITION 2.3. If H has a UOSD relative to E(.) then the UOSD-multiplicity of E(.) is defined to be the same as its OSD-multiplicity. If P is a projection of H commuting with E(.) and if P E(.) has UOSD-multiplicity n, then we say that P has UOSD-multiplicity n relative to E(.).

The following simple example shows that, in general, the OSD-multiplicity and H-multiplicity of a projection P relative to E(.) are not the same even though H is finite dimensional.

EXAMPLE 2.4. Let $H = \mathbf{C}^5$, $\mathbf{S} = \{\phi, \{\lambda_1\}, \{\lambda_2\}, \{\lambda_1, \lambda_2\}\}$, λ_1 , $\lambda_2 \in \mathbf{C}$, $\lambda_1 \neq \lambda_2$ and E(.) be a spectral measure on \mathbf{S} given by $E(\{\lambda_1\})$ $H = [e_1, e_2]$ and $E(\{\lambda_2\})$ $H = [e_3, e_4, e_5]$, where $e_1 = (1,0,0,0,0)$, $e_2 = (0,1,0,0,0)$, etc. Since any maximal orthogonal family of row projections (in the sense of Halmos [2]) $\{E_{\alpha}^i\}$ in W^i with $C_{E_{\alpha}^i} = I$ consists

of just two members, the H-multiplicity of I is 2. On the other hand, if $x_1 = e_1 + e_3$, $x_2 = e_2 + e_4$ and $x_3 = e_5$, then $H = \sum_{1}^{3} \bigoplus Z(x_1)$ is an OSD of H since $\rho(x_1) \equiv \rho(x_2) >> \rho(x_3)$. Thus the OSD-multiplicity of I is 3.

The following result is well-known in the theory of Von Neumann algebras, whose proof is indicated also on p.108 of [2]. Using this result we compare the UH-multiplicity and UOSD-multiplicity of a projection.

LEMMA 2.5. Let P' be an abelian projection in W'. If the central support $C_{p'}$ of P' is countably decomposable in W, then P' is cyclic.

THEOREM 2.6. Let P be a countably decomposable non-zero projection in W'. Then P has UH-multiplicity N $\leq M_0$ if and only if P has UOSD-multiplicity N (relative to E(.)).

PROOF. Suppose the UH-multiplicity of P is N $\leq \mathcal{N}_0$. Then by Theorem 1.2 there exists an orthogonal family $\{P_j^i\}_{j\in J}$ of abelian projections in W' such that card. J=N, $C_{P_j^i} = P$ and $P = \sum\limits_{j\in J} P_j^i$. Let $J = \{1,2,\ldots,N\}$. By Lemma 2.5 there exists $x_j \in P_j^i$ H such that $P_j^i = [W_{X_j^i}]$, $j \in J$. Thus $PH = \sum\limits_{j\in J} \Theta [W_{X_j^i}] = \sum\limits_{j=1}^N O Z(x_j)$. Besides, by Theorem 66.2 of [2], $C(\rho(x_j)) = C_{[W_{X_j^i}]} = C_{P_j^i} = P$ for all j. There-

fore, by Theorem 65.2 of [2] , $\rho(x_j) \equiv \rho(x_{j'})$ for $j,j' \in J$. Hence the condition is necessary.

Conversely, if P has UOSD-multiplicity N, then clearly N \leq $N \leq N_0$. Let PH = $\sum\limits_{i=1}^{N} P$ Z(x_i) be an OSD of PH relative to PE(.). Then by Proposition 2.2, $\rho(x_1) \equiv \rho(x_2) \equiv \dots$ Consequently, by Theorem 66.2 of [2] we conclude that $C[N_{X_1}] = C[N_{X_2}] = \dots = Q(say)$. Clearly, $P = \sum\limits_{i=1}^{N} [N_{X_i}] \leq Q$. As $P \in W$, $[N_{X_i}] \leq C[N_{X_i}] = P$ so that Q = P. Since each $[N_{X_i}]$ is an abelian projection in W' by Theorem 60.2 of [2], from Theorem 1.2 it follows that P has UH-multiplicity N.

3. SOME CHARACTERIZATIONS OF THE CGS-PROPERTY.

In terms of the existence of OSDs and OSRs of H the CGS-property of a spectral measure E(.) is characterized in [4]. The following Theorem gives some more characteriza - tions of this property.

THEOREM 3.1. Let E(.) be a spectral measure on \boldsymbol{s} with values in projections of H. Then the following statements are equivalent.

- (i) Every projection of UH-multiplicity N in W is countably decomposable in W and n $\leq M_o$.
- (ii) The projections Q_n are countably decomposable in W and $Q_n = 0$ for $n > \mathcal{W}_0$.

- (iii) Every projection in W is countably decomposable in W and has H-multiplicity n $\leq N_0$.
- (iv) Every projection of UH-multiplicity in W is countably decomposable in W'.
- (v) The projections Q_n are countably decomposable in W'.
- (vi) Every projection in W is countably decomposable in W'.
- (vii) Every non-zero projection of UH-multiplicity in W has UOSD-multiplicity (and hence they are equal).
- (viii) E(.) has the CGS-property in H.

PROOF.

- (i) =>(ii) Let $Q_n \neq 0$. Then by Proposition 1.3, Q_n has UH-multiplicity n. Therefore, (ii) is immediate from (i).
- (ii)=>(iii) If P is a non-zero projection in W, then by $(ii) P = \sum_{n \leq N_0} Q_n P. \text{ Being } Q_n \text{ countably decomposable in W, it follows that the same is true for P. Then the H-multiplicity of P = min <math>\{n: PQ_n \neq 0\} \leq N_0 \text{ by Theorem 64.2 of }$ and by Proposition 1.3.
- (iii) =>(iv) Let P be a non-zero projection of UH-multiplicity n. By (iii), n $\leq M_0$. By Theorem 1.2 there exists an orthogonal family $\{E_1'\}_1^n$ of

abelian projections in W' such that $P = \sum_{i=1}^{n} E_{i}^{i}$ and $C_{E_{i}^{i}} = P$ for all i. Now by (iii) and Lemma 2.5 there exist vectors x_{i} in PH such that $[Wx_{i}] = E_{i}^{i}$. If $\mathbf{X} = \{x_{i}\}_{1}^{n}$, then clearly PH = $[W\mathbf{X}]$ so that by Lemma 3.3.9 of [3] P is countably decomposable in W'.

- (iv)=>(v) This is immediate, since Q_n has \mathfrak{A}_n multiplicity n by Proposition 1.3.
- $(v) \Longrightarrow > (vi) \text{ Let } P \text{ be a non-zero projection in } W. \text{ Then } P = \sum\limits_{\substack{n \leq \dim H \\ posable \text{ in } W'}} P \, Q_n \text{ and by } (v) \, Q_n \text{ are countably decomposable in } W'. \text{ To prove that } P \text{ is countably decomposable in } W', \text{ it suffices to show that } Q_n = 0 \text{ for } n > M_0. \text{ If } Q_n \neq 0, \text{ as } Q_n \text{ has } UH-\text{multiplicity } n \text{ by Proposition 1.3, there exists an orthogonal family } \{E_\alpha'\}_{\alpha \in J_n} \text{ of abelian projections in } W' \text{ such that card. } J_n = n, \, Q_n = \sum\limits_{\alpha \in J_n} E_\alpha' \text{ and } C_{E'} = Q_n. \text{ As } Q_n \text{ is countably decomposable in } W', \text{ it follows that } J_n \text{ is countable so that } n \leq M_0. \text{ Consequently, } Q_n = 0 \text{ for } n > M_0.$
- (vi)==>(vii) Let P be a non-zero projection of UH-multiplicity n. By (vi) P is countably decomposable in W' and hence in W. By Proposition 1.3, there exists a unique Q_n such that $P \leq Q_n$. As

in the proof of $(v) \longrightarrow > (vi)$ we note that $Q_k = 0$ for $k > M_0$ and hence $n \le M_0$. Consequently, by Theorem 2.6, (vii) holds.

- (vii)=>(viii) By Proposition 1.3 Q_n has UH-multiplicity n if $Q_n \neq 0$. Then by (vii), $n \leq M_0$ if $Q_n \neq 0$ and hence $Q_n = 0$ for $n > M_0$. Again by (vii) as Q_n has UOSD-multiplicity n for $n \in J_0 = \{n: Q_n \neq 0\}$ there exists an orthonormal set $\{x_{nj}\}_{j=1}^n$ in Q_n H such that Q_n H = $[E(\sigma) \ x_{nj}: \sigma \in S, j=1,2...,n]$. Therefore, H = $[E(\sigma) \ x_{nj}, n \in J_0, j=1,2,...,n]$ and hence (viii) holds.
- (viii)=>(i) By (viii) and by Lemma 3.3.9 of [3] W' is countably decomposable and hence W is countably decomposable. Besides, evidently for every projection P of UH- multiplicity n in W, n $\leq M_0$. Thus (i) holds.

4. COMPARISON BETWEEN OSD-MULTIPLICITY AND H-MULTIPLICITY.

Example 2.4 is just a particular case of the following more general result.

THEOREM 4.1. Suppose E(.) has the CGS-property in H. Let P be a non-zero projection in W with the H-multiplicity n and with the OSD-multiplicity (relative to E(.))N. Then:

(i)
$$n \leq N$$
.

- (ii) n = N if and only if P has UH-multiplicity n.
- (iii) n = N if and only if P has UOSD-multiplicity n (relative to E(.)).

PROOF. By Theorem 62.4 of [2] there exists a non-zero projection Q in W such that Q \leq P and such that Q has UH-multiplicity n. Besides, by Theorem 3.1, Q is countably decomposable in W and n $\leq \mathfrak{N}_0$. Therefore, by Theorem 2.6 Q has the UOSD-multiplicity n relative to E(.). Consequently, by Theorem 5. of [4] the total multiplicity of Q is n and therefore, n \leq N.

(ii) Suppose n = N. We discuss the following two cases. Case 1. n is finite.

By hypothesis, there exists a maximal orthogonal family $\{E_i^i\}_1^n$ of abelian projections in W' such that $C_{E_i^i} = P$ for all i. If P does not have UH-multiplicity then by Theorem 2.2 $P \neq \sum\limits_1^n E_i^t$. Now, by Theorem 3.1 (iii) and Lemma 2.5 there exist vectors $x_i \in PH$ such that $E_i^i = \left[w x_i \right]$, $i=1,2,\ldots,n$. Then by Theorems 66.2 and 65.2 of $\left[2 \right]$ we have $\rho(x_1) \equiv \rho(x_2) \equiv \cdots \equiv \rho(x_n)$. Let $E' = \sum\limits_1^n E_i^t$. Clearly, $E' \in W'$ and $E'H = \sum\limits_1^n \bigoplus\limits_1^n Z(x_i)$ is a UOSD of E'H relative to E(.)E'. If $x \in (P-E')$ H and $x \neq 0$, then $\left[w x \right] = Z(x) \perp E'H$ and $\left[w x \right] \leq P = C \left[w x_1 \right]$. Consequently, by Theorem 65.2 of $\left[2 \right]$ we conclude that $\rho(x) << \rho(x_1)$. On the

other hand, by Theorem 1 of [4] there exists an OSD: (P-E')H= $= \frac{\ell}{\Sigma} \oplus Z(x_i)$, $\ell \in IN \cup \{\infty\}$, of (P-E') H relative to E(.)(P-E') n+1 so that PH = $\sum_i \bigoplus_j Z(x_i)$ is an OSD of PH relative to E(.)P. Thus $\ell = N$ and P has OSD-multiplicity N > n. This contradiction proves that P has UH-multiplicity n.

Case 2. n is infinite.

Due to Theorem 3.1, $n=\mathcal{N}_0$ and $Q_k=0$ for $k>\mathcal{N}_0$. Since $P=\sum_{\ell\leq \dim H} PQ_\ell=\sum_{\ell\leq M_0} PQ_\ell$ and since the H-multiplicity of P is \mathcal{N}_0 and is given by $\min\{\ell:PQ_\ell\neq 0\}$, we have $PQ_\ell=0$ for $\ell\neq\mathcal{N}_0$. Thus $P\leq Q_{\mathcal{N}_0}$ and hence P has UH-multiplicity \mathcal{N}_0 by Proposition 1.3.

REFERENCES

- J. Dixmier, Les Algébres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris (1969).
- 2. P.R. Halmos, Introduction to Hilbert space and the Theory of spectral multiplicity, Chelsea, New York (1957).
- 3. T.V. Panchapagesan, Introduction to von Neumann algebras Lecture Notes. To be published in Notas de Matemática Facultad de Ciencias, Universidad de los Andes, Venezuela.
- 4. T.V. Panchapagesan, Invariantes unitarias de los opera-

dores normales en espacios de Hilbert separables, Primeras Jornadas de Análisis, Departamento de Matemática Facultad de Ciencias, Universidad de los Andes, Venezuela, pp. 45-63, (1987).

5. T.V. Panchapagesan, Multiplicity Theory of Projections in Abelian von Neumann Algebras (to appear in Revista Colombiana Mat. Vol. XXII 1988).

Departamento de Matemáticas Facultad de Ciencias Universidad de Los Andes MERIDA - VENEZUELA