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ABSTRACT
In this work, we propose to use the roots of the
characteristic equation of the differential operator, to

decompose the original boundary value problem (BVP) in a serie of
initial value problems, which are easier to solve.

In particular, we have applied the Operator Decomposition
Method (ODM) to the numerical solution of a class of 1linear
singularly perturbed problems of the type

e y"(x) + p(x) y'(x) + q(x) y(x) = £(x)
with € << 1 and general linear or non-linear boundary conditions
in [a,b]. We proved that the stiffer the original BVP the faster
the algorithm converges, and it needs only a few iterations for ¢

= 107° or 107°.

About 30 stiff tests reported in the literature (including
boundary-layer, rappidly oscilatory and turning-point problens)
have been solved with a very simple FORTRAN 77 code. All of them
needed only a few seconds of execution time in a personal
computer.

The ODM has been also applied to solve some interesting
problems like the Orr-Sommerfeld equation, one-dimensional Stefan
problem and a class of BVP in an unbounded interval.

1. Introduction

Singularly perturbed boundary value ordinary differential
- problems have received a big attention during the last years. It
is shown by the variety of special methods proposed, difference
methods as in [1] to [4], multiple shooting techniques as in [4]
to [6], Riccati method as in (4] and [6], etc. The above words
are an indication of the difficulty and the importance of the
task involved.

In this work we mainly focus the following problem:

Py:= ey"(x) + p(x,e)y’(x) + g(x,e)y(x)= £(x,€), a=xsb (1.a)
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under the boundary conditions
«y(a) + By’ (a)= 7 (€) (1.b)
o y(b) + By’ (b)= 7,(¢€) (1.c)
where P represents the differential operator, 0 < € << 1, p, (q,
f e Cl[a,b] and o, Bl, 71(8) € R for i=1,2. Moreover we supouse
that (1) is well-conditioning.

We propose a new iterative method that is based on the roots
of the differential operator characteristic equation, to
decompose the problem (1) in a set of initial value problems,
which are easier to solve.

The main ideas of the ODM were given in [7] for a fourth and
second order equations.

In 2., we describe the method and the algorithm. In 3. the
convergence of a typical case is analysed, and it is shown under
which conditions the method converges. The rate of convergence
appears to be not slower than for a geometric progression whose
ratio decreases as £ decreases, under certain conditions on the
characteristic roots. It is also obtained,that the convergence
does not depend on the initial approximation of the solution.

In 4. some quadrature formulas are specialy obtained to solve
the linear initial value problems in which solution the ODM is
based. Some good properties of this formulas are given.

Paragraph 5. displays the numerical solution of five test
problems and some especific applications such as, the solution of
the one-dimensional Stefan problem, the Orr-Sommerfeld equation
and BVP in an unbounded interval of the type [0, o ).

‘2. The Operator Decomposition Method
If D and D° denote the first and second derivatives, then (1)

can be written as

Py:= (D° + p(x,€)/e D + q(x,e)/e)y= £(x,€)/¢ (2)
and its characteristic equation is

u? + p(x,e)/e u + q(x,€)/e= 0 (3)
whose roots are



p(x,e)/VE * /p*(x,e)/e - 4q(x,¢)
L (x,e)= (4.a)
2 2VE

and we set
u(x,€):= Ve b (x,¢€) (4.b)
for i1=1,2.
Then by means of the characteristic roots, if T exists in
[a,b], we have
Py:= (D - u,(x,€)) (D = u (x,€))y= £(x,e)/e = u/(x,€)y (5)
multipling (5) by €, considering (4.b) and denoting
z:= VE (D - u (x,€))y - (6)
we obtain the equivalent system

VE 2! -y (x,8)z= £(x,€) = VE ui (x,e)y (7.a)
Ve ¥ - u (X,€)y= Z(X) (7.b)

It is easy to see that if Z, 2., Yo ¥ and y, are complex

1
functions such that satisfy the following problems

Ve z! -, (x,€)z = £(x,¢) -Ve u! (x,e)y, z (a) or z (b)= 0 (8.a)

Ve z! -, (x,€)2=0, z(a) or z (b)=1 (8.Db)
Ve Y(’)-'- Hoo(x,€)y,= zo('x), y,(a) or y (b)= 0 (8.c)
ve vyl - m(x,8)y,= 2 (%), ¥ (a) or y (b)= 0 (8.d)

VE ¥} - i, (x,€)Y,= 0, y,(a) or y,(b)= 1 (8.e)

the solution of (1) can be written as
y(x)= Re(y_(x) + Cy (x) + Cy_ (x)) (9)

where C1’ C. can be found from (1.b) and (l1l.c), solving a linear

2
system. Here Re represents the real part of a complex number.

We choose the condition in a or b according to the sign of the
real part of (4.a) in order to get stable initial value problems.

Observing (8.a), we note that the right hand side of the
equation depends on the solution of the original problem (1). We
solve this difficulty by means of an iterative process as

follows:
Stepl. We solve the problems (8.b), (8.d) and (8.e).
Step2. Given an approximation for y, we solve the problem
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_ (8.a).
Step3. Given z, we solve (8.c).

Step4. We compute C, and C, solving the 1linear system which

results from (1.b), (l.c) and the expression (9).
Step5. We form a new approximation of y by (9) and if the
imposed convergence condition is not fulfilled, we go
back to step number 2.
Note that the functions z2., Y, and y, are independent of the

approximation of y, thus they may be compute only once.

3. Convergence Analysis

In this section we give a general idea of under which
conditions we can guarantee the convergence of the method.

The analysis of the convergence must be considered for several
cases depending on the values and the sign of the real part of
the characteristics roots, here we limitate the analysis to a
typical case. More detailed information about this topic is given
in [8].

Let’s supose that um(x,e) and L%O(x,c) have positive real

parts, and that constants K1(8)’ K:(c) and M1(8) exist such that
'
0< Kl(c)S‘Re(um(c))s K1(8)’ i=1,2 (10.a)
| u;o(x,e)ls M (€) (10.Db)

Moreover, set o holding

n n-1
hyto-y

II= o O€ R (10.c)
where yi represents the approximation of y in the iteration i of
~the method. Analogously, we denote by zé, y;, Ci the solution of
(8.a), (8.c) and the constant C, in the iteration i (C2 does not
change during the iterative process because we are taking B1=Bz=0

in order to simplify the analysis).
Taking into consideration that the solution of
w/ + g(x)w= h(x), w(0)=0
can be written as



Tt
x J Tg(TaT
W (x)= lh(t) e az
we can obtain the following bounds:
n+1 n ‘/E Ml(e) O‘n
Il Z, T % = K1 (g) (11.a)
n+1 n ‘/E Ml(e) o.n
” Yo T ¥, = 2 (11.b)
[x, )
and because in this case
n
g T2 Y2 — v, tyi@)
1 =Y, (@)
we have
" Ve M (g) o
c™ - s - (11.¢)
1 1 2
(x, )] 1y, @)1
now in the same way that for (11.a) and (11.b), we get
< 1
- (1.0
so, using (9) and the bounds (11) we finally obtain that
' Ve M (g) o
n+1 n. < 1 1 n
| v Yo = [1 T Ty, (@) T K_(2) ] 2 (12)

)
Then we conclude that, if the multiplicative factor of o in
(12) is less than one, the method converges and evenmore if this
factor tends to zero as € tends to zero, the stiffer of (1) the
faster algorithm converges.
_ Observing (12) we see that, if the above convergence condition
holds, it does not matter which is the initial approximation for
Yy, so the method has global convergence.

4, Quadrature Formulas for the intial value problems
We are left with the numerical solution of the problems (8).
In this section we will obtain explicit quadrature formulas (7],

that allow us to solve efficiently our auxiliar Cauchy problems.

For the problem
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Ve u’+ A(x)u = v(x), u(0)= 0 (13.a)
where ReA (x)=z o > 0 and £ << 1.

We define a grid 0= X <...<x = a in [0,a]. In what follows,
for any function f(x), we put fk= f(xk). We need to compute
Wseeesu, while VoresotV g Ao,...,kn and AO,...,An are known;
here

A(x)= Jxx(z)dz

The computations are carried out from left to right. We will

give a recursive formula that expresses u .. in terms of u and
the given quantities.

From (13.a) for k=0,1,...,N-1 we have

u .= u exp -Ve (A, - Ak)] + ¢ (13.b)

where

X .
k+1 -

¢ = Jexp{—ﬁ [AM- A(t)_} ;’—&%- d{—\/E [AM- A(t):'}

X
k

Put p(t) = v(t)/Aa(t). Let v(t) be a "good" function. Represent
(t) in the form

A AR)

p(t)= ¢m4+ Ak+1- Ak [(¢k‘ wmq) + O[(tmq- tkfj] (13.c)

Then for the principal part of ¢(t) integration can be carried
out explicitly, and we obtain

v
. k+1 _ _ _
¢~ _A——{l exp[ Ve (A, Ak)]} +
k+1

v v

k _ k+1
A A

k k+1

{1 - [1 + Ve (A, - Ak)]exp[-—\/E (A, - Ak)]}

From (13.b) we now obtain the required recursive formula

v
u .= ukexp[—\/E (A, - Ak)] + '—Ak—”—*{l - exp[—\/E (A~ Ak)]} +

‘/E (Ak+1— Ak)

k+1
v v
k _ k+1
x
k kel {1—[1 + VE(A - A)]exp[-\/E(A - A)]} (13.4d)
1/5 (Ak+1" k) k+1 k k+1 k
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which has the following properties
a) it is stable for any x-step and € (provided, of course,
ReA (x) = o > 0);

b) it gives a global error O(h min(h,ve )) on [0,a], where

h= max (X .- X )
X k+1 k

If ReA(x)= o < 0 an anologous backward formula can be
obtained.
This result was obained by integrating the error in (13.c)

over the intervalu{xk,xmq] and then summing over all intervals.

For ¢(t) we used an interpolation formula linear in A(t). If
(13.c) is replaced with an expression which is a polynomial of
higher degree in A(t), then we obtain an explicit formula with
property a) that has an accuracy of higher order (an analogue of
Adams formulas).

5. Numerical examples and applications
All the following examples were solved in a PC, IBM AT using a
very simple FORTRAN 77 code. In all cases the exact or the

. ~-4 . A
numerical error were 1less than 10 . The execution time was

always of a few seconds.

5.1 Test problems
a) Boundary Layer Problems
Example (5.1.1), Fig.l1, [1].
ey" - xy’ - 1/2y =0
y(-1)=1, y(1)=2
This example was solved for €= 10, N=121, relative

error=10"% and absolute error=10"'°.

Example (5.1.2), Fig.2, [4].
ey" + (2+cos(nx))y’ - y = F(x%)
y(0)=0, y(1)=-1

where

F(x)= -(1+cn2)cos(nx)- T (2+cos(nx) )sen(nx) + (1+ nzxz/e)e4M/ee
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Its exact.solution is

y(x)= cos(mnx) - e EC 4 o(e?)

This example was solved for e= 104, N=121, the maximal order

of disagreement with the exact solution was 107,

b) Turning Point Problems

Example (5.1.3), Fig.3, [9].

ey" + xy’ - 1/2y = 0

y(-1)=1, y(1)=2

Its turning point is for x = 0. We took € = 1073, N =221,

relative error=10"° and absolute error=10"°.
Example (5.1.4), Fig.4, [9].
ey" + xy!’ -y = —(1+en2)cos(nx) + X sen(mx)
y(-1)=-1, y(1)=1
Its turning point is in x = 0 too and was solved for € = 10

N =241, relative error=10"° and absolute error=10'°.

c) Rapidly Oscillarory Problems
Example (5.1.5), Fig.5, [10].
ey" + y = cos(80x)
y(0)=1, y(1)=0
Its exact solution is
y(x)= a cos(100x) + b sen(100x) + 10°cos(80x) (¥-6400)".
where
a= 1-7/(¥-6400)
b= ((cos(100)-cos(80))/e(1/e-6400)-cos(100))/sen(100)
This example was solved for e= 104, N=501, the maximal order

.of disagreement with the exact solution was 1072,

For this example we used the quadrature formulas in spite off
that ReA(x)=0. This was possible because of the constant
coefficient of the equation. If not the code access to a Runge-
Kutta routine, RK4, [11].

The code was proved for about 30 stiff tests reported in the
literature and all the numerical experiments are shown in {[12].
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5.2 Stefan Problem

This problem appears in many fields of the science when we
study phenomena like evaporation, fusion, solidification, etc. An
important characteristic of this problem is the unknowledge of
the boundary position for each value of time.

The one-dimensional Stefan problem consists of

5%(k(x)%§}— pcil = £(x,t)- (14.a)
u(o,t) =T %%(o,t) + a(t) (14.b)
u(s(t),t) =0 (14.c)

du _ ds .

k(s(t))g(s(t),t) = -Apzg + u(s(t),t) (14.d)

L 1s a given boundary source which may depends on the position of
the free boundary s(t). k(x) and all other data functions are
assumed to be piece-~wise continuos in this model. At points of
discontinuity of the data the natural one-sided limits are to be
taken. .

As it is known the method of lines is one of the main sources
from where singularly perturbed BVPs arise. We solved the Stefan
problem combining the ODM and the method of lines like was done
for the sweep method in [13].

The first step is to approximate the parabolic equation by a

sequence of elliptic problems at successive time steps. Let t
denotes the nth time level and set At= tn- tm4' Then (14) can be
approximated by '

n-1

Lu = (ku’)’ - pc—%E = -pc—pz= + £(x,t) (15.a)
u(0) = Irru’(o) + a(tn) (15.b)
u(s) = 0 (15.c)
s-s
k(s)u’(s) = -Ap———z%ll + u(s,t) (15.4)

and now we applied the following algorithm for n=1,2,...:

Stepl. We take s _, as initial approximations for s -

Step2. We solve the BVP (15.a)-(15.c) wusing the 1last
approximation for s_ in place of it.

Step3. Solving the scalar equation (15.d) for s we find a new
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approximation for s, and if the imposed convergence
condition is not fulfilled, we go back to step number
2.

The numerical results for k=p=c=A=l,

f=u=I'=0, «a=-1, whose

exact solution is

s(t)= 1.2404vt
u(x,t)= -1+ &( x/vt )/9(0.6202), for 0= x= s(t)
where

X 2

$(x)= 2/Va I e T at

taking At=Ax=0.01, and t=0.5 are summarized in the following
table

Exact Boundary Approximate Boundary
0.8770 0.8947
Uex Uap Error
0 -1 -1 0

0.2 -0.7441 -0.7421 0.002
0.4 -0.4982 -0.4945 0.004
0.6 -0.2712 -0.2664 0.048
0.8 -0.0698 -0.0876 0.028
s(t) 0.0153 0 0.015

5.3 BVP in an unbounded interval
We have also applied the ODM to solve the Holt’s problem
y" - (x™#R)y = 0
y(0) =B
lim y(x) =0
where R= 2m+1, m € N. This problem is considered a classical test
problen. _
In this case the ODM is simpler to apply since the system (7)
results
Ve 2z’ -q(x)z= Ve q’(x)y
Ve y! +g(X)y= z(X)

(l16.a)
(16.Db)
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where e€=1/R and q(x)=V 1+x2/R . So taking the boundary conditions
z(w) = 0 and y(0) = B, we guarantee that the solution y of the
above system is the solution of our original problem. Thus the
algorithm for this case is:
Stepl. Given an approximation for y, we solve the problem
(16.a).
Step2. Given z we solve (16.b).
Step3. If the imposed convergence condition is not
fulfilled, we go back to step number 1.
There exist some techniques which change the second boundary

condition for one.- equivalent in a finite point, [14], but for

this problem was enough to take the condition y(10) = 107°,

In the following table appear the results for differents values
of R. :

R Iterations number Num. Error |y -y I
num rep

1 15 10”12 10°°

5 11 10”13 10°°

10 10 10”7 ?

102 8 1022 ?

10° 6 10" 2% ?

Remark: Here Yoo denotes the numerical solution reported in
[14].

5.4 Orr-Sommerfeld equation

This equation is a typical problem that appears in fluid
mechanics.

The following eigenvalue problem was solved using the ODM

iv

y'' - 2ay" + o'y = iaR[(U-c) (y"-a’y)-U"y], xe [0,1]
Y’ (0)=y" (0)=0
11



y(1)=y’ (1)=0
where a= 1, Rr=10" (Reynold’s number), U= 1-x® and c= c + ici is
the eigenvalue.
This example has a turning point for c,=0 and c = 1-x°. The

obtained value of c was ( 0.237501 + i 0.0037378).

Here it was necessary to take a non uniform grid given by

= 1 2— 1=
xj vl wjexp[p(wj 1)], Jj=1,...,N

with p= logR. The number of points was N=500 and the relative
error was 10 /. The execution time was about 15 minutes because
of the second iterative process that was necessary to impiement
for the eigenvalue. We used for that the inverse iteration
method. More details of the wuse of the ODM for this equation can
be seen in [15].

6. Summary and Conclusions

The ODM 1is an iterative method for singularly perturbed
ordinary second order linear BVP. This method based on the
characteristic roots reduces the original problem to a sequence
of Cauchy’s problems, that are easier to solve.

We prove that, under certain conditions the stiffer the
original BVP the faster the algorithm converges.

The big variety of numerical experiments and applications of
this method show its efficiency.

The method can not be applied in some cases as for example:
when the real part of the characteristic roots changes its sign
in the interval or when the derivative of the roots are not
“bounded. It is our opinion that the multiple shooting ideas might
be helpful in these cases.

Finally we want to say that the ODM can beapplied if the
boundary conditions are nonlinear and in this case we only have

to solve a nonlinear algebraic system instead of a linear one.
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