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In many problems concerning controllability and accessibility of
Banach space valued systems, hypotheses on the Banach spaces such
as separable and reflexive arise naturally; frequently, such hypothe-
ses are employed in one capacity or another at each stage of studying
a éiven control system. It is the purpose of this note to show how
some tools from Banach space theory can be used to painlessly re-
move the reflexivity from conditions like “separable and reflexive”
thereby rendering considerable generality to the resulting conclu-
sions.

We start by outlining the main construction of G. Peichl and
W. Schappacher [1986]/D. Barcenas and H. Leiva [1989]. Next, we
gather some “tools of the trade” from Banach space theory, tailoring
these results to the ends in mind. Lastly, we show how these tools
can be systematically applied to erase the “reflexivity” from the

“separable, reflexive” hypotheses used in our opening paragraphs.



We believe that non-specialists in Banach space theory can ben-
efit from some of the procedures we discuss herein. The results
invoked are very general, yet sharp, and, since we remove the more
subtle of the two hypotheses, “separable and reflexive”, these results
are worthy of the non-specialists’ attention.

§1. A. Review

It is well-known (E. Lee and L. Markus [1967]) that if X =
R*, U = IR™, A and B are n x n and m X n matrices, respectively,
and §) is a compact subset of U, then the set of accessible points for

the linear system

with measurable controls u taking values in {2, is compact and con-
vex.
G. Peichl and W. Schappacher [1986] have extended this result to

the case where U is a reflexive Banach space, Q is a closed bounded



convex set in U and concluded that the set of accessible points
is weakly compact and convex. D. Barcenas and H. Leiva [1989]
went on to extend the Peichl-Schappacher result to the case U and
U* have the Radon-Nikodym property; their proof highlights sev-
eral aspects of reflexivity not made plain by the Peichl-Schappacher
work. It was, then, a combination of these two works which led
to the present note. Since the purpose of this note is, in part, to
demonstrate the use of Banach space techniques to relax reflexivity
hypotheses, we will outline the Peichl-Schappacher/Barcenas-Leiva

proof in a reflexive setting.

81. The opening scene.
Let’s get our bearings.

Let U and X be reflexive Banach spaces, U separable. consider



the linear system

z(t) = Az(t) + Bu(t) "
z(0) ==z, € D(A)

where A : D(A) € X — X is a linear operator generating a strongly
continuous semigroup (St)iy0, B : U — X is a bounded linear opera-
tor and u : [0,00) — U is a strongly measurable essentially bounded
function.

We suppose that 2 is a weakly compact, convex subset of U.

We call on some basic terminology from optimal control theory
(see R. Curtain and A. Pritchard [1978] and G. Peichl and W. Schap-
pacher [1986]).

The set

Qr={ue LF[0,T]:u e Qa.e.}

is called the set of admissible controls of (*), while the set

T ~
AT(:L‘O) = {ST:L'O +/0 ST_tBu(t)dt tu € QT}



is called the set of accessible points of (x). The system (*) is

controllable if 0 € Ay(z,).

Proposition 1. Qr is a weakly compact subset of LE[0,T) for 1 <

p < oo and Ar(z,) is a weakly compact subset of X.

The procedure of Peichl-Schappacher/ Earcena.s-Leiva is roughly
the following; we’'ve assumed U is separable and reflexive so, if
1 < p < oo, Qr is weakly compact and convez in LE[0,T] by the
classical Dunford-Pettis theorem (suitably modified to the vector-
valued case; see J. Diestel and J.J. Uhl, Jr. [1977] ). But the

operator
C:L{0,T] —» X
defined by

T
C’u=fo St-sBu(s)ds

is a bounded linear operator and so takes the weakly compact, con-

vex set {1 to a weakly compact convex subset of X. It is plain that
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Ar(z,) is but a linear translate of said set and so Ar(z,) is weakly
compact and convez, too.

We want to remark here that the reflexivity of U allows one to
conclude that L};[0,T] is reflexive, too; though this seems straight
for\;Vard, it is not. Indeed, one needs to know that U’s reflexiv-
ity allows one to apply a vector-valued version of the Lebesgue-
Vitali theorem (with functions taking values in U*) to realize that
L0, T* = LP. [0, T] where ;1; + ’% = 1. Further, we take note of
our inclusion (first noticed by Barcenas and Leiva) of p = 1 in this
scheme; by the same reasoning just hinted, L};[0, T']* is L§[0, T} and
so with a bit of care one can show that K C L}[0,T] is relatively
weakly compact if and only if K is uniformly integrable, following
almost exactly the classical Dunford-Pettis pattern to proving this
theorem. Of course, {7, being uniformly essentially bounded, is

uniformly integrable.



Next Peichl-Schappacher/Barcenas-Leiva employ the weak com-

pactness (and only that) of 2 to conclude to the following.

Proposition 2. (i) For each s € [0,T], define the map Fy : X* —
(0,00) by

Fy(z*) := max < z*,S,Bv > .
veEQR

Then {Fy:s € [0,T]} is equicontinuous.

(ii) For each z* € X*, the mapping of [0,T] to [0,00) that takes
s €[0,T] to maxv;g < z*, S,Bv > is continuous.

Next, a measurable selection theorem (due to N.U. Ahmed and

K.L. Teo [1981]) proves useful.

Proposition 3. Denote by WC(U) the collection of non-empty
weakly compact subsets of U and let I be a compact subset of R.

Suppose I : I — WC(U) satisfies

(1) |J I'(¢) is bounded in U

teK



and

(2) for any sequence (tn) in K if ¢* =limi,

then

Then there ezists a strongly measurable u : I{ — U such that u(t) €
I'(t) a.e. in K.

A consequence:

Proposition 4. For each z* € X* there is u € Qr such that
< z*,5,Bu >= maxyeq < z*,5,Bv > for almost every s € [0,T].
The separable reflexive nature of U comes into play in Proposition
3’s proof in two essential places: first, to deduce that U* is sepa-
rable, thereby providing a norming sequence against which one can
optimize and diagonalize; second, on finding a scalarly measurable
selection with values in U, an appeal is made to Pettis’s measur-

ability theorem to deduce that said selection is, in fact, strongly



measurable.

The upshot of these considerations is the following elegantly for-

mulated result.

Theorem 1 (2.3 of Peichl-Schappacher). Let X, U be reflezive
Banach spaces with U separable. Let B : U — X be a bounded linear
operator, A be the infinitesimal generator of a Cp-semigroup (S,)s>0
of operators on X and Q0 be a weakly compact conver subset of U
that contains 0. Then for each T >0, 0 € Ar(z,) if and only if for

each z* € X*, < z*,S1z, > +f0T max,eq < z*,5;Bv > dt > 0.

§2. Thg plot.

We’re interested in removing the reflexivity hypotheses from the
results cited in §1. That such is possible is due to the very spe-
cial character of weakly compact sets in general Banach spaces. Of

course, weakly closed bounded subsets of reflexive spaces are weakly



compact but the converse is also so, in a sense. The following result
of W.J. Davis, T. Figiel, W.B. Johnson and A. Pelczynski [1974]
makes precise the sense in which weakly compact sets live in reflex-

1ve spaces.

The Davis-Figiel-Johnson-Pelczynski i"actorization Scheme.

Let I be a non-empty weakly compact subset of a Banach space
Z. Then there exists a reflexive Banach space R and a bounded 1-1
linear operator F.: R — 7 such that FBR D K.

While the result appears to be very imposing, in fact, it’s orig-
inal proof is not difficult though it is cleverly achieved.

In our context, it is noteworthy that the operator F' takes a
weakly compact set C inside the closed unit ball Bg of the reflexive
space R in an bijective weakly continuous fashion onto the given
weakly compact set I{. F is therefore an affine homeomorphism

between (C, weak) and (K, weak). This feature of the factorization
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scheme reaps manifold benefits one of which was noted by J. Diestel

[1977] and is particularly relevant to the present discussion.

Proposition 5. Let K be non-empty weakly compact, convez subset
of t'he Banach space Z. Suppose (2,3, i) is a finite measure space
ané 1 < p < oo. Then the set {f € L%(u)‘: f(w) € K p—ae}is
a weakly compact convez subset of LG (u).

Though this result suffices for our present purposes, we would
be remiss if we did;l’t mention that recently the first general criteria
for relative weak compactness in L%(u), general Z and 1 < p < oo,
have been uncovered by A. Ulger [1991] and J. Diestel, W. Ruess
and W. .Scha,chermayer [1993].

The result:

Proposition 6. A bounded subset K of L% (u) is relatively weakly

compact if and only if K is uniformly integrable and given any se-
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quence (fn) C K there is a sequence (gn) such that g, € conv
{fn, frt1s---} and (gn(w)) converges in (Z,|| ||) for u-almost all
w € Q. This happens if and only if K is uniformly integrable and
given a sequence (f,) C K there is a sequence (g,) such that g, €
conv {fn, frt1,-.-} and (gn(w)) converges- weakly in Z for almost
every w € .

Since bounded sets in L% (u) are uniformly integrable in case p >
1, the condition of uniform integrability in these cases is redundant.
We also hasten to add that A. Ulger [1991] showed how to deduce
Proposition 5 from Proposition 6 in short order, without recourse

to the Factorization Scheme of Davis, et al.

§3. Scene two.
We return to §1’s results and reformulate them (in considerably

greater generality). We suppose U and X are Banach spaces. Con-
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sider the linear system

z(t) = Az(t) + Bult) ()
z(0) =z, € D(A)

where A : X — X is a linear operator generating a strongly continu-
ous semigroup (Si)i>0 whose dual semigroup (S7)e>0 is also strongly
continuous in (0,00), B : U — X is a bounded linear operator and
u: [0,00) — U is a strongly measﬁrable essentially bounded func-
tion. We suppose that ) is a non-empty separable weakly compact
convez subset of U.

Proposition 5 says we can state Proposition 1 in the form

Proposition 1. Qr is a weakly compact convez subset of L7,[0,T]
for each 1 < p < oo and Ar(z,) is a weakly compact convez subset
of X.

Proposition 2 called on 2’s weak compactness without regards

for the structure of the ambient space U so it is still applicable in
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our present set-up. Proposition 3 can be amended as follows.

Pi‘oposition 3’. Let U be any Banach space and §) be a non-empty
separable weakly compact convex subset of U. Let I{ be a non-empty
compact subset of R and A be a map from K into the collection of

non-empty weakly closed subsets of Q! such that

NUAE ™ < A@)

n n>i

whenever (t;) € I and t; — t*. Then there is a strongly measurable
function g : X — Q such that g(t) € A(t) for (almost) every t € K.

Were U reflexive, Proposition 3 would be in play. Generally,
we call on the Factorization Scheme. Start with the non-empty
separable weakly compact convex subset (2 of the Banach space U.
We can assume U is separable. Apply the Factorization Scheme to
find a reflexive Banach space R, an injective bounded linear operator
F : R — U and a weakly closed subset C' of Bg such that F(C) = Q.

Fis a weak homeomorphism of C and 2, ) is weakly separable so C

14



is; it follows that the closed linear span of C is separable by Mazur’s
theorem, so we can assume R is a separable reflexive Banach space.

Define I' : K — WC(R) by I'(t) = F~'(A(t)). Since F (and
hence F~1) is a weak homeomorphism, should (¢,) be a sequence in

K with t, — t* we have

————e——weak weak

nn UnZi F(ti) = ﬂn UnZi F_I(A(ti))

weak

= N F=1 Unxi(A(%:))

eak

= nn F_IUnZi A(t!)

eak

= F ' (NaUnpi A(t) )

= F-1(A(t)) = T(t7).

A strongly measurable selection f : K — C results with f(¢) €
['(t) = F~'(A(t)) holding for (almost) all t € K.
Remember F' : R — U is a bounded linear operator so F o f =
g: K — § is strongly measurable and is plainly a selection for A.
Proposition 3’ in hand Proposition 4 now holds in our present

non-reflexive context. All is set to piece Proposition 1’, Proposition

15
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2, Proposition 3’ and Proposition 4 together more-or-less as Peichl

and Schappacher did Proposition 1,2,3 and 4. The result:

Theorem 1'. Let X and U be Banach spaces, let B : U — X
b? a bounded linear operator and A : X — X be the infinitesimal
generator of a Co-semigroup (Si)i>o on X whose dual semigroup is
strongly continuous on (0,00). Suppose §) is a non-empty separa-
ble, weakly compact convezr subset of U containing 0. Then for each

T >0, 0 € Ar(z,) if and only if for each z* € X*,
T
<z" Srz, > +/ rrg%x <z*,5Bv>dt>0.

An interesting point to the comments above is that we’ve reduced
the question of accessibility of controls to a problem in semi groups
of operators, namely, given a C,-semigroup (S;):>o of operators on
a Banach space X under what conditions is the dual semigroup
strongly continuous on (0,-oo)? This question is taken up in the

sequel.
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To conclude, we’d like to address the issue of the strong continuity
of (S;)t>0. To give our remarks some semblence of coherency we call
on an old friend: the Gelfand integral.

Suppose (,%, P) is a complete probability space (any finite
measure space will do as well, actually), and X is a Banach space.
A function f: 2 — X~ is said to be Gelfand integrable if for each
z € X, f(-)(z) € L}(P). It follows from the closed graph theorem
that if f : @ — X* is Gelfand integrable then for each event E in

> there is a unique z; € X* so that for each z € X

2y(z) = /E F(w)(z)dP(w).

The vector z; is called the Gelfand integral of f over £ and denoted
by

G- /Efdp.

The point to be made here is that the Gelfand integral exists

under absolutely minimal conditions.
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An important thing to realize is that the Gelfand integral helps
to describe any bounded linear operator from L}(P) to X*. In fact,
if f:Q — X*is Gelfand integrable and essentially bounded, then

for each g € L'(P), f(-)g(-) is Gelfand integrable and the operation

gHG/ngdP. ‘

defines a bounded linear operator from L'(P) to X*. The converse
also obtains thanks to the lifting theorem: if u : L*(P) — X* is
a bounded linear operator and X : L*(P) — L*(P) is a lifting,

then f(-)z = A o u*( )(z) defines an essentially bounded Gelfand

integrable function such that for any g € L!'(P),

ulg) = G [ gfdP.

Another ingredient is called for. Recall that a Banach space X
has the Radon-Nikodym property if given a complete probability
space (2,3, P) (again, any finite measure space will do) and any

operator u : L*(P) — X there is a Bochner integrable f : @ — X
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such that (f is essentially bounded and) for each g € L}(P),
ug = Bochner /gfdP.

It is a remarkable theorem of N. Dunford and B.J. Pettis [1940]
thgt says that if X* is separable then X* has the Radon-Nikodym
property. It is an insightful observation of J.J. Uhl [1972] that if
every separable subspace of X has a separable dual, then X™* has
the Radon-Nikodym property. It is a stunning success of C. Stegall
[1975] that says i-f X™ has the Radon-Nikodym property, then every
separable subspace of X has a separable dual.

For our purposes we say that a Banach space X is an Asplund
space if band only if X* has the Radon-Nikodym property. This is
purely a convenience and we warn the reader that we are condensing
an enormous amount of deep and beautiful theory relating measure
theory and the geometry of Banach spaces; we invite said-reader to

look to the papers of C. Stegall, I. Namioka and R.R. Phelps cited

19



in the bibliography to get a feel for what we’ve been discussing.

A bounded linear operator u : X — Y is called an Asplund
operator if there exist bounded linear operators v : X — A and
w : A — Y so that u = wv, where A is an Asplund space. This
notion was introduced and successfully studied by C. Stegall [1981]
who showed that an operator u : X — Y is an Asplund operator if
and only if its adjoint u* : Y — X™ factors through a dual space
with the Radon-Nikodym property, that is, there is an‘Asplund
space B so that for some bounded linear operators W : Y* — B*
and V : B* - X* we have u* = VW,

Here’s our small contribution to the question of when the adjoint
semigroup of (Sy):>o is strongly continuous on t > 0. It is inspired
by the result of J.M.A.M. van Neerven [1990] and D. Barcenas -
H. Leiva (unpublished) but is more widely applicable because it

addresses each semi-group candidate individually. We follow van
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Neerven’s [1990} proof.

Theorem. Suppose (S;)i>0 is a strongly continuous semigroup of
operators on the Banach space X and that for eacht > 0, S, is an
Asplund operator. Then (S})i>0 ts strongly continuous.

Proof: Let [a, ] be any closed bounded 1;nit interval contained in
(0,00). Since Sy, is an Asplund operator there is an Asplund space
A and bounded linear operator u: X — A and v: A — X so that

the following diagram is commutative

X - X

Notice that for any ¢ € [e, (], the following diagram also commutes,

thanks to the semigroup property
St
X X

u St_a?
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Everything is in place. Take z* € X* and for t € [, 3] define

fz‘ (t) = U*S;-a(w*)'

It is easy to see that f,. : [@, 8] — A* is weak® continuous hence
Gelfand integrable with respect to Lebesgue measure on the unit

interval {a@, 8]. An operator T : L'[a, 3] — A* is born:
8
Tg=G- /a 9(t) fur (2)dt

But A is an Asplund space and so A* enjoys the Radon-Nikodym
property thanks to MESSRS Namioka and Phelps. It follows that

T is representable in the form

8
Tg= Bochner/ g(t)h(t)dt

for some essentially bounded, strongly measurable & : [a, 8] — X*.
Here’s the situation: for g € L'[a, 8]

G /a ? () fur(t)dt = Tg = B / ? JOht)dt.

o
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Look to g(s) = X[t,t+¢)(s); on normalization we have

G'/tH—C %fx-(s)ds =T (x@) = B/;H-c i—h(s)ds.
Let ¢ — 0 and look closely. Because f,- is weak* continuous, the left
hand side tends (weak*) to fz«(t). By Lebesgue’s theorem (which
a;;plies to the Bochner integral), the right side tends (in norm) to
h(t) for almost all ¢t € [a, 8]. So fz+(t) = A(t) for almost all t € [a, 3].

It follows that for each z* € z*
t — (St—qv)"(z")

is strongly measurable on [, B]. From this we see that t — u*(S;—,v)*(z*) =
(Si—qvu)*(z*) = (St=aSa)*(z*) = S;(z*) is too. We conclude that
t — S;z* is strongly measurable on (0, 00) and so the still useful old
gem of E. Hille assures us of the strong continuity of (S})¢so.

The easiest way to assure each S; is an Asplund operator is to
suppose X* has the Radon-Nikodym property (or equivalently, each

separable subspace of X has a separable dual); this is the result of
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van Neerven [1990] and Barcenas-Leiva.

In case X* does not have the Radon-Nikodym property it may
still happen that each S; is Asplund. Here’s how to recognize that
such is the case in some special spaces whose duals don’t have the

Raaon-Nikodym property.

Example 1. If X = C(K), then X* has the Radon-Nikodym prop-
erty if and only if K contains no perfect subsets. Many of the
C(K)’s that arise .in the study of control systems are based on K’s
(like [0,1], [0,1]?, etc.) that do have perfect subsets. In any case,
an operator u : C(K) — C(K) is an Asplund operator if and only if
given a bounded sequence (f,) in C(K), its image (uf,) has a point-
wise convergent subsequence. This we feel is a condition which is

easily tested and so might be of use to non Banach space specialists.

Example 2. If X is a weakly sequentially complete Banach space,
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then an operatoru : X — X is an Asplund operator precisely when u
is a weakly compact operator, i.e., u Bx is relatively weakly compact
in X.

All the Lebesgue spaces L,(u)(1 < p < o0) are weakly sequen-
tially complete, as are the (weighted) Lorentz spaces Lwp(1 < p <
oo) of G.G. Lorentz [1950]; the classical Lorentz spaces L, ,(1 < ¢ <
p < 00) and Orlicz spaces Lg(p) generated by an Orlicz function @
that satisfies the. As-condition.

In each of these cases, the space under consideration is a Ba-
nach function space and so weakly compact sets in these spaces
are understood. In case of the Lebesgue spaces, N. Dunford and
J.T. Schwartz [1958] tells all about weak compactness; for Lorentz
spaces, the [1980] dissertation of J. Creekmore should be consulted
while for Orlicz spaces, J. Alexopoulos [1999] is worth a look.

In case the measure on which the function space is modeled is

25



finite (so for L1[0,1], L,4[0,1] of Lg[0,1]), then a bounded subset
K of the function space is relatively weakly compact precisely when
g - I is uniformly integrable for each g in the Kothe dual of the
space. Here the Kéthe dual of F' is the collection of all measurable

g such that [|f - g| < oo for each f € F.

Example 3. If (Si)i>0 is a strongly continuous semi-group of As-
plund operators on an L,-space then each S; must, in fact, be com-
pact (and convex;sely).

This follows from the facts cited in Example 2, the fact that L,-
spaces have the Dunford-Pettis property of A. Grothendieck [1953],
and an application of the semi-group property: Sy = (S;/2)%.

We might remark that there are other important weakly sequen-
tially complete Banach spaces that enjoy the Dunford-Pettis prop-

erty; among them:

Li(T)/H}, C(T)/A, A*, H®*.

26
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Example 4. In case X is a Banach space with the Dunford-Pettis
property and the Grothendieck property, then H.P. Lotz [1985] has
discovered the remarkable fact that any strongly continuous semi-
group (S¢)i>o0 has a bounded infinitesimal generator and so (S} )i>o
is.‘strongly continuous.

Among the X’s that are covered by the Lotz discovery are all

Loo(p)-spaces and H™.
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