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Hopf bifurcation for the equation
ẍ(t) + f (x(t))ẋ(t) + g(x(t− r)) = 0.

Antonio Acosta and Marcos Lizana

En este artículo estudiamos la existencia de soluciones periódicas de amplitud pequeña de la
ecuación diferencial con retardo ẍ(t) + f(x(t))ẋ(t) + g(x(t − r)) = 0, vía bifurcación de Hopf.
Suponemos que g es una función de clase C1, f(0) = c > 0 , g(0) = 0 y ġ(0) = d > 0.

1 Introduction

In the analysis of the existence of nonconstant periodic solutions of the equation

ẍ(t) + f(x(t))ẋ(t) + g(x(t− r)) = 0, (1.1)

it is necessary to have a detailed information about the behavior of roots of the characteristic
equation for the linear part of the equation (1.1); namely the equation

λ2 + cλ+ de−λr = 0. (1.2)

Hereafter, we will assume that r > 0, f is continuous, g is continuous together with its first
derivative, f(0) = c > 0 , g(0) = 0 and ġ(0) = d > 0.

The main goal of this paper is to give necessary and sufficient conditions for all roots of the
equation (1.2) to have negative real parts. By using the Hopf’s bifurcation theorem and the
above mentioned result, we will discuss the existence of small amplitude periodic solutions of the
equation (1.1), taking as bifurcation parameter c either d or r.

The equation (1.1) has been studied by many authors under the assumption that d = 1, for
details see for instance [2], p.p.348-355. To the author’s knowledge this equation has not been
studied just requiring d > 0, which can not be transformed to an equivalent one with d = 1. Thus
why, along this work we have to perform again the study of the location of roots of the equation
(1.2) and we can not use the known results in the literature about the equation (1.2) for d = 1.

Finally, we point out that the equation (1.1) arises in many applications, a special case is
f(x) = k(x2 − 1), k > 0; which is the famous van der Pol equation with a retardation, see [2],
p.355.
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2 Stability of the equation λ2 + cλ+ de−λr = 0

The main goal in this section is to discuss the location of roots of the transcendental equation
(1.2). More precisely, we will obtain a necessary and sufficient condition in order that all roots of
the equation (1.2) lie to the left of the imaginary axis. We are not going to use the Pontriaguin’s
techniques outlined in Hale-Lunel [2], Appendix A. Instead of that we will give a direct proof,
using some ideas contained in Baptistini-Táboas [3]

Let us denote by

z = λr , α =
1

dr2
, β =

c

dr
. (2.1)

In terms of α, β and z the equation (1.2) can be rewritten as follows

(αz2 + βz)ez + 1 = 0 . (2.2)

Let us denote by z = a+ ib, a, b ∈ R. A straightforward computation shows that equation (2.2)
is equivalent to the system

ea[(α(a2 − b2) + βa) cos b− (2αa+ β)b sin b] + 1 = 0 (2.3)

(α(a2 − b2) + βa) sin b+ (2αa+ β)b cos b = 0 (2.4)

Proposition 1 The system (2.3)− (2.4) is equivalent to the following system

(2αa+ β)b = e−a sin b (2.5)

α(a2 − b2) + βa = −e−a cos b (2.6)

Proof 1 Let us denote by

u1 = (cos b, sin b) , u2 = (− sin b, cos b) , v = ((2αa+ β)b, α(a
2 − b2) + βa).

Thus, (2.3)− (2.4) are equivalent to the following system

v ∙ u2 = −e
−a , v ∙ u1 = 0 (2.7)

where “ ∙ ” denotes the inner product in R2. Taking into account that u1 ∙ u2 = 0 and v ∙ u1 = 0,
we obtain that v = δu2, for some δ in R. From (2.7) we get that δ = −e−a. So, v = −e−au2 is
equivalent to

((2αa+ β)b, α(a2 − b2) + βa) = −e−a(− sin b, cos b)

which in turn implies (2.5)− (2.6).

The following result is inspired in the Theorem 2.1 in [3].

Lemma 2 Let v(a, b) and w(b) be vectors define by

v(a, b) = ea((2αa+ β)b, α(a2 − b2) + βa) , w(b) = (sin b,− cos b) .

Then, for a giving a ≥ 0 and a nonnegative integer n, there exist unique numbers bn(a) ∈
(2nπ, (2n+ 1)π) and λn(a) > 0 such that

v(a, bn(a)) = λn(a)w(bn(a)) . (2.8)

Moreover, bn(a) and λn(a) depend continuously on a.



Proof 2 For each a ≥ 0, equations γ = ea(2αa + β)b , η = ea(α(a2 − b2) + βa), with b ∈
R, describe a parabola in the (γ, η)−plane. Therefore, when b ≥ 0 increases the vector v(a, b)
describes clockwise an unbounded arc of parabola, meanwhile w(b) describes counterclockwise the
unit circle.The way in which those curves are oriented implies that in each interval of the form
(2nπ, (2n + 1)π), n = 0, 1, ..., there exists a unique number bn(a), that depends continuously on
a, such that v(a, bn(a)) is a positive multiple of w(bn(a)). This proves (2.8).

b0(0)

(sin ξ,− cos ξ)

γ

η

Figure 1:

Theorem 3 All roots of the system (2.5)-(2.6) have negative real part, if and only if β > sin ξ
ξ ,

where ξ is the only root on the interval (0, π2 ) of the equation αξ
2 = cos ξ.

Proof 3 Let us assume first that all roots of the system (2.5)-(2.6) have negative real part, i.e.
a < 0. However, β ≤ sin ξ

ξ , where ξ is the only root on the interval (0,
π
2 ) of the equation αξ

2 =

cos ξ. If β = sin ξ
ξ , then the pair (a, b) = (0, ξ) is a solution of (2.5)-(2.6), and this contradicts the

fact that a < 0. Now, let us suppose that β < sin ξ
ξ . Applying Lemma 2 with a = 0, n = 0 see fig.

1, we obtain that v(0, b0(0)) = λ0(0)w(b0(0)), with 0 < b0(0) < ξ. Moreover,

λ20(0) = β
2b20(0) + α

2b40(0) = b
2
0(0)(β

2 +
cos2ξ

ξ4
b20(0)) < ξ

2(
sin2 ξ

ξ2
+
cos2 ξ

ξ2
) = 1.

Thus, λ0(0) < 1. On the other hand, by the continuity of λ0(a) and the fact that lima→∞ λ0(a) =
∞, it follows that there exists a positive number a∗, such that λ0(a∗) = 1, and the pair (a∗, b0(a∗))
is a solution of (2.5)-(2.6), which is a contradiction. This completes the proof of the necessity.

Let us prove now the sufficiency. In order to accomplish our goal let us assume that β > sin ξ
ξ ,

where ξ is the unique real number on the interval (0, π2 ) such that αξ
2 = cos ξ. Let us begin

remarking that no matter constants α and β be, the pair (a, 0), with a ≥ 0, is not a solution of
system (2.5)-(2.6). Let us suppose that there exists a pair (a, b) , with a ≥ 0 and b > 0, which is
a solution of the system (2.5)-(2.6). We will establish that under the hypothesis on β, it can not
occur. The discussion is splitted in two cases a = 0, b > 0 and a > 0, b > 0.

If a = 0 and b > 0 then, from (2.5)-(2.6) we obtain that α = cos b
b2

and β = sin b
b . If b ∈ (0,

π
2 )

then it must be equal to ξ which is the only root on the interval (0, π2 ) of the equation αξ
2 = cos ξ.



Henceforth β > sin ξ
ξ =

sin b
b = β, which is a contradiction. Let us assume that b ≥

π
2 . Since α and

β are positive, we get that cos b > 0 and sin b > 0 and those inequalities imply that b > 2π. Now,
1
b <

1
2π and then

sin b
b <

1
2π <

2
π . Combining this with the fact that

2
π <

sin ξ
ξ , due to ξ ∈ (0,

π
2 )

and on this interval the function g(x) = sinx
x is decreasing, we obtain that β > sin ξ

ξ >
sin b
b = β,

which is a contradiction as well.

Now, let us analize the case when a > 0 and b > 0. If a > 0, then from (2.5) we obtain that
sin b > 0 and β < sin b

b . Therefore, from our assumption on β, we obtain

sin ξ

ξ
<
sin b

b
. (2.9)

Let us show that there not exist a b > 0 such that (2.9) and the system (2.5)-(2.6) are satisfied
simultaneously. Since sin b > 0, we have that b ∈

⋃∞
n=0(2nπ, (2n+ 1)π). If b ∈ (0,

π
2 ) and b ≥ ξ,

and having in mind that the function g(x) = sinx
x is decreasing on (0, π2 ), we obtain that

sin ξ
ξ ≥

sin b
b

which contradicts (2.9). If b ∈ (0, π2 ) and b < ξ, then, using that cos b > cos ξ, we obtain from
(2.6) the estimation α(a2 − b2) + βa < −e−a cos ξ. This estimation together with the assumption
on β and the fact that α = cos ξ

ξ2
imply cos ξ

ξ2
a2 − cos ξ

ξ2
b2 + sin ξξ a < −e

−a cos ξ, and this implies,

multiplying both sides by 1
cos ξ and using that

b
ξ < 1, that

1

ξ2
a2 +

tan ξ

ξ
a− 1 < −e−a . (2.10)

Now, for any ξ ∈ (0, π2 ) and x > 0 the graph of the function g1(x) =
1
ξ2
x2 + tan ξξ x − 1 is above

the graph of g2(x) = −e−x. Therefore, under the assumption that a > 0, the inequality (2.10)
has no solution and this gives us a contradiction which comes from the fact that equation (2.6) is
satisfied.

Let us discuss now the case b ∈ [π2 , π). If b ∈ [
π
2 , π), then

sin b
b <

2
π and this together with the

fact sin ξξ >
2
π , imply

sin ξ
ξ >

sin b
b which contradicts (2.9).

Finally, if b ∈
⋃∞
n=1(2nπ, (2n+ 1)π), then b > 2nπ. Now,

1
b <

1
2nπ and then

sin b
b <

1
2nπ <

2
π .

Combining this with the fact that 2π <
sin ξ
ξ , which contradicts (2.9). This completes the proof of

our claim.

Taking into account Theorem 3 and going back to the original variables, we can state the main
result of this section.

Theorem 4 All roots of the equation (1.2) lie to the left of the imaginary axis, if and only if
c
d >

sin(rξ)
ξ , where ξ is the only root on the interval (0, π2r ) of the equation

ξ2

d = cos(rξ).

The following result will play a fundamental role in applying the Hopf bifurcation theorem.

Proposition 5 All roots of the equation λ2 + cλ + de−λr = 0 with nonnegative real part are
simple. Moreover, if λ0 is a root with real part equal to zero, then all other roots λj 6= λ0, λ̄0
satisfy λj 6= mλ0 for any integer m.



Proof 4 Let us set F (λ) = λ2 + cλ + de−λr and let us assume that there exists a solution
λ = a+ ib, with a ≥ 0, of equations F (λ) = 0, which is not simple; i.e. F (λ) = F ′(λ) = 0. Taking
into account this fact a straightforward computation gives us

(
2a+ c

d
)b = e−ar sin(rb) (2.11)

1

d
(a2 − b2 + ca) = −e−ar cos(rb) . (2.12)

and
2a+ c− dre−ar cos(br) = 0 (2.13)

2b+ dre−ar sin(br) = 0 . (2.14)

Combining (2.11) and (2.14) we obtain that 2a + c = −2/r, which is a contradiction, due to
a ≥ 0, c, r > 0.

In order to establish the last part of the proposition, let us assume that there exists a λm such
that F (λm) = 0 and λm = mλ0, for some m 6= −1, 0, 1, where λ0 = ib.

By using (2.11) and (2.12), we obtain that cbd = sin(rb) , −
b2

d = − cos(rb) ,
cmb
d = sin(rmb)

, −m
2b2

d = − cos(rmb), which in turn imply that

(
cb

d
)2 + (

b2

d
)2 = (

cmb

d
)2 + (

m2b2

d
)2,

or
b2m4 + c2m2 − c2 − b2 = 0. (2.15)

Roots of the equation (2.15) are m = ±1, m = ±
√
1 + ( cb)

2. Henceforth, the equation (2.15) have
no integer solutions except m = ±1. This completes the proof.

3 Hopf Bifurcation

In this section, by using the Hopf bifurcation theorem, we discuss the existence of nonconstant
periodic solutions of small amplitude of the equation (1.1).

Let us denote by F (p, λ) = λ2+cλ+de−λr, where p represents either c , d or r. Following Hale-
Lunel [2], Chapter 11 and taking p as a bifurcation parameter, it follows that the equation (1.1)
has a nonconstant periodic solution of small amplitude if the following conditions are satisfied:

(H1) The characteristic equation F (p, λ) = 0 has a simple purely imaginary root λ0(p0) =
ib0(p0) 6= 0 and all the others roots λj(p0) 6= λ0(p0), λ0(p0) satisfy λj(p0) 6= mλ0(p0) for any
integer m, for some p0 > 0.

(H2) There exists an open interval containing p0 such that the roots of F (p, λ) = 0 can be
expressed as a function λ = λ(p), for p on that interval. Also λ(p) is a C1 function and

Reλ′(p0) 6= 0 . (3.1)

We are going to carry on all computations in the case that the delay r is taking as a bifurcation
parameter. We point out that the condition (H1) follows from Proposition 5, and the condition
(H2) is derived from the following lemma.



Lemma 6 Fixing c, d > 0 there exists a unique pair (r0, ξ(r0)), with r0 > 0, where ξ is a function
of r such that

1

d
ξ2(r0) = cos(r0ξ(r0)) with ξ(r0) ∈ (0,

π

2r0
) (3.2)

and
c

d
ξ(r0) = sin(r0ξ(r0)) . (3.3)

Moreover,

(i) If 0 < r < r0 , then cd >
sin(rξ(r))
ξ(r) and all roots of the equation λ2 + cλ+ de−λr = 0 have

negative real part.

(ii) If r = r0 , then the equation λ2 + cλ + de−λr = 0 has two roots on the imaginary axis
and all the other roots lie on the left of the imaginary axis.

(iii) If r > r0 , then cd >
sin(rξ(r))
ξ(r) and the equation λ2 + cλ+ de−λr = 0 has no roots on the

imaginary axis and it has a finite number of roots with positive real part.

Finally, there exists an open interval containing r0 such that λ = λ(r) the roots of F (r, λ) = 0
are a C1 functions such that

Reλ′(r0) > 0 . (3.4)

Proof 5 Giving r > 0, there exists a unique ξ = ξ(r) ∈ (0, π2r ) such that
1
dξ
2(r) = cos(rξ(r)).

We have that ξ(r) is a decreasing function and this implies that there exists a unique r0 such
that (r0, ξ(r0)) satisfies (3.2) and (3.3). Indeed, functions Ψ1(r, ξ(r)) = c

dξ(r) , Ψ2(r, ξ(r)) =
sin(rξ(r)) have just one intersection point on the set {(r, ξ(r)) : r > 0}, namely (r0, ξ(r0)).

From the previous discussion and Theorem 4 we obtain parts (i),(ii) and (iii) of our claim.

In order to get the last part of the lemma, let us consider the function F (r, a, b) = (a2 − b2 +
ca+ de−ra cos(rb), 2ab+ cb− de−ra sin(rb)). A straightforward computations gives us that

D(a,b)F (r0, 0, ξ(r0)) =

(
c− dr0 cos(r0ξ(r0)) −2ξ(r0)− dr0 sin(r0ξ(r0))

2ξ(r0) + dr0 sin(r0ξ(r0)) c− dr0 cos(r0ξ(r0))

)

,

and therefore detD(a,b)F (r0, 0, ξ(r0)) > 0, due to (0, ξ(r0)) is a simple root. Thus, the implicit
function theorem implies there is an open interval I, containing r0, and a unique solution λ =
λ(r) = (a(r), b(r)) with r ∈ I such that λ(r0) = (0, ξ(r0)) and F (r, a(r), b(r)) = (0, 0). Moreover,
after some computations we obtain that

Reλ′(r0) = a
′(r0)

=
dξ(r0)(c sin(r0ξ(r0)) + 2ξ(r0) cos(r0ξ(r0)))

detD(a,b)F (r0, 0, ξ(r0))
> 0.

Using Proposition 5 and Lemma 6, we state our main result of this paper.

Theorem 7 Equation (1.1) has a Hopf bifurcation at r = r0, where r0 is defined in Lemma 6.
Moreover, if r ∈ (0, r0) then the trivial solution of (1.1) is locally asymptotically stable.

Finally, we point out that similar results to Theorem 7 can be obtained taking as bifurcation
parameter either c or d. The proof is basically the same of Lemma 6, except obvious modifications.
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