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The Bartle-Dunford-Schwartz integral
V. Integration in locally compact Hausdorff spaces-Part II

T.V. Panchapagesan

This part consists of Sections 20-24. The classical Lusin’s theorem is generalized in Section 20
for σ(P)- measurable functions with respect to an X-valued σ-additive measure m defined on
P where X is a Banach space or an lcHs and P = B(T ) ( resp. Bc(T ), B0(T ), δ(C), δ(C0)) and
it is deduced that Cc(T ) (resp. C0(T )) is dense in Lp(m) and Lp(σ(P),m), 1 ≤ p < ∞ for
both the cases of X when P = δ(C) or δ(C0) (resp. when P = B0(T ) or Bc(T ) or B(T )). Section
21 is devoted to the study of the Lusin measurability of functions and sets. Let m : B(T )→ X

(resp. n : δ(C)→ X) be σ-additive and Borel regular (resp. and δ(C)-regular). Then it is shown
that that a scalar function f on T is Lusin m-measurable if and only if it is m-measurable (see
Theorem 21.5); and it is n-measurable if and only if it is Lusin n-measurable with N(f) being σ-
bounded(see Theorem 21.6). Section 22 is devoted to improve Theorem 4.2 of [P8] and Theorem
12.2 of [P10] for m and n. Section 23 is devoted to present the Baire version of Corollary T2,
Appendix I of [T] and to generalize it to σ-additive regular vector measures. Finally, Section
24 describes the duals of L1(m) and L1(n) when X is a Banach space and gives the vector
measure analogues of Theorem 4.1 and Proposition 5.9 of [T]. Of course, some of the ideas and
techniques found in [T] are suitably adapted in this study.

20. GENERALIZED LUSIN’S THEOREM AND ITS VARIANTS

In the sequel, T denotes a locally compact Hausdorff space and U , C, C0 are as in Definition
16.4 of [P10]. Then B(T ) = σ(U), the σ-algebra of the Borel sets in T ; Bc(T ) = σ(C), the σ-ring
of the σ-Borel sets in T and B0(T ) = σ(C0), the σ-ring of the Baire sets in T . δ(C) and δ(C0)
denote the δ-rings generated by C and C0.

Notation 20.1. Cc(T ) = {f : T → KI, f continuous with compact support}; Crc (T ) = {f ∈
Cc(T ) : f real}; C+c (T ) = {f ∈ C

r
c (T ) : f ≥ 0}; C0(T ) = {f : T → KI, f is continuous and vanishes

at infinity in T}; Cr0(T ) = {f ∈ C0(T ) : f real} and C
+
0 (T ) = {f ∈ C

r
0(T ) : f ≥ 0}. All these

spaces are provided with the supremum norm || ∙ ||T .

As in Parts I, III and IV, X denotes a Banach space or an lcHs over KI (RI or CI) with Γ, the
family of all continuous seminorms on X, unless otherwise mentioned and it will be explicitly
specified whether X is a Banach space or an lcHs. Let P = B(T )(resp. Bc(T ), B0(T ), δ(C), δ(C0))
and let m : P → X be σ-additive and P-regular (see Definition 16.7 of [P10]). In this section we
obtain the generalized Lusin’s theorem and its variants for σ(P)-measurable scalar functions on
T , with respect to m when X is a Banach space and when X is an lcHs. Then we deduce that
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Cc(T ) (resp. C0(T )) is dense in Lp(m) and Lp(σ(P),m), 1 ≤ p < ∞, for both the cases of X
when P = δ(C) or δ(C0) (resp. when P = B0(T ) or Bc(T ) or B(T )).

Theorem 20.2(Generalized Lusin’s theorem for m on B(T ) ).

(i) (m normed space-valued). Let X be a normed space and m : B(T )→ X be σ-additive
and Borel regular. Suppose f : T → KI is Borel measurable. Then, given ε > 0, there exists
g ∈ Cc(T ) such that

||m||(N(f − g)) = ||m||({t ∈ T : f(t)− g(t) 6= 0}) < ε (20.2.1)

and
||g||T ≤ ||f ||T . (20.2.2)

(ii) (m lcHs-valued). Let X be an lcHs and let m : B(T ) → X be σ-additive and Borel
regular and let f be as in (i). Then, given ε > 0 and q ∈ Γ, there exists gq ∈ Cc(T ) such
that

||m||q(N(f − gq)) < ε (20.2.3)

and
||gq||T ≤ ||f ||T . (20.2.4)

Proof. (i) Let X̃ be the Banach completion of X. Then m : B(T ) → X ⊂ X̃ and hence
m can be considered as Banach space valued. As m is Borel inner regular in T , there exists
K ∈ C such that ||m||(T\K) < ε

2 . By hypothesis, fχK is B(T )-measurable and vanishes in
T\K. If fχK is bounded in T , then the proof of Theorem 2.23 of [Ru1] for the case of bounded
Borel functions holds here if we replace μ by ||m||, since ||m|| is σ-subadditive on B(T ) by
Proposition 2.2 of [P8]. Hence there exists g ∈ Cc(T ) such that ||m||(N(fχK − g)) < ε

2 . Then
||m||(N(f −g)) ≤ ||m||(N(fχK −g))+ ||m||(T\K) < ε. When fχK is unbounded, the argument
in the proof of the said theorem of [Ru1] for the unbounded case also holds here since ||m||
is continuous on B(T ) by Proposition 2.2 of [P8] and hence there exists g ∈ Cc(T ) such that
||m||(N(fχK−g)) < ε

2 so that by the above argument ||m||(N(f−g)) < ε. Hence (20.2.1) holds.

To prove (20.2.2), it suffices to restrict to the case ||f ||T = M <∞. We argue as in the last
part of the proof of the said theorem of [Ru1]. Let g ∈ Cc(T ) satisfy (20.2.1). Replacing g by
g1 = ϕ ◦ g, where ϕ(z) = z if |z| ≤ M and ϕ(z) = Mz

|z| if |z| > M , we deduce that g1 ∈ Cc(T ),
||m||(N(f − g1)) < ε and ||g1||T ≤ ||f ||T . Hence (20.2.1) and (20.2.2) hold for g1.

(ii) Given q ∈ Γ, mq = Πq ◦m : B(T )→ Xq ⊂ X̃q is σ-additive and Borel regular and hence
by (i), (ii) holds.
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To obtain the variants of Theorem 20.2 when m : R→ X is σ-additive and R-regular, where
R = Bc(T ) (resp. B0(T ), δ(C), δ(C0)), we give the following lemmas.

Lemma 20.3. Let X be a normed space or an lcHs. Then an X-valued σ-additive measure
on B0(T ) (resp. on δ(C0)) is B0(T )-regular (resp. δ(C0)-regular).

Proof. The result for δ(C0) holds by Theorem in [DL] while that for B0(T ) holds by Remark
on pp.93-94 of [DL].

Lemma 20.4.

(i) Let X be a normed space and let nc : δ(C)→ X (resp. n0 : δ(C0)→ X) be σ-additive and
let nc be δ(C)-regular. If f : T → KI is Bc(T )-measurable (resp. B0(T )-measurable) and if A
is a compact in T such that f(t) = 0 for t ∈ T\A, then, given ε > 0, there exists g ∈ Cc(T )
such that

||nc||(N(f − g)) < ε (20.4.1) (resp.||n0||(N(f − g)) < ε (20.4.2))

and moreover, we can choose g ∈ Cc(T ) such that

||g||T ≤ ||f ||T . (20.4.3)

(ii) If X is an lcHs in (i) and if the remaining hypotehsis of nc (resp. n0) and of f remain the
same, then, given q ∈ Γ and ε > 0, there exists gq ∈ Cc(T ) such that

||nc||q(N(f − gq)) < ε (20.4.4) (resp.||n0||q(N(f − gq)) < ε (20.4.5))

and moreover, we can choose gq ∈ Cc(T ) such that

||gq||T ≤ ||f ||T . (20.4.6)

Proof. (i) One can adapt the proof of Theorem 2.23 of [Ru1] as follows. Choose a relatively
compact open set V such that A ⊂ V . In the construction of the functions on p.53 of [Ru1], we
can observe that 2ntn (in the notation of [Ru1]) is the characteristic function of some σ-Borel
(resp. Baire) set Tn ⊂ A and

f(x) =
∞∑

1

tn(x), x ∈ T

since f is Bc(T )-measurable (resp. B0(T )-measurable). By hypothesis, nc is δ(C)-regular (resp.
by Lemma 20.3, n0 is δ(C0)-regular) and hence there exist Kn ∈ C (resp. Kn ∈ C0) and an open
set Vn ∈ δ(C) (resp. Vn ∈ δ(C0)) such that Kn ⊂ Tn ⊂ Vn ⊂ V with ||nc||(Vn\Kn) <

ε
2n (resp.

with ||n0||(Vn\Kn) <
ε
2n ) for n ∈ NI. Let us suppose that 0 ≤ f ≤ 1 in A. Then choosing hn by

Urysohn’s lemma such that Kn ≺ hn ≺ Vn for all n and then defining g(x) =
∑∞
1 2
−nhn(x), x ∈
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T as on p.54 of [Ru1] and using the fact that ||nc|| (resp. ||n0||) is σ-subadditive on Bc(T ) (resp.
on B0(T )), we note that g ∈ Cc(T ) and ||nc||(N(f − g)) < ε (resp. and ||n0||(N(f − g)) < ε)
and hence (20.4.1) (resp. (20.4.2)) holds. From this it follows that these inequalities hold if f
is bounded. When f is not bounded, let Bn = {x : |f(x)| > n}. Then Bn ↘ ∅ in Bc(T ) (resp.
in B0(T )) and by hypothesis, Bn is relatively compact for all n. Then by Lemma 18.2 of [P11],
(Bn)

∞
1 ⊂ δ(C) (resp. (Bn)∞1 ⊂ δ(C0)). Since X ⊂ X̃, the Banach completion of X, we can con-

sider nc and n0 as Banach space-valued and hence Proposition 2.2 of [P8], ||nc||(Bn)→ 0 (resp.
||n0||(Bn)→ 0). Then arguing as in the general case of Theorem 2.23 of [Ru1] with ||nc|| (resp.
||n0||) replacing μ we observe that (20.4.1) (resp. (20.4.2)) holds for the general case. (20.4.3) is
proved as in the last part of the proof of Theorem 2.23 of [Ru1].

(ii) This is immediate from (i), since (nc)q : δ(C) → Xq ⊂ X̃q is σ-additive and δ(C)-regular
and (n0)q : δ(C0)→ Xq ⊂ X̃q is σ-additive for q ∈ Γ.

Lemma 20.5. Let X be an lcHs and let mc : Bc(T )→ X be σ-additive and σ-Borel regular.
Then ωc =mc|δ(C) is σ-additive and δ(C)-regular.

Proof. Clearly it suffices to prove the lemma when X is a normed space and hence let X
be so. Since ωc is σ-additive, it suffces to prove the regularity of ωc. Let A ∈ δ(C) and ε > 0.
Then by hypothesis, there exist K ∈ C and an open set U ∈ Bc(T ) such that K ⊂ A ⊂ U and
||nc||(U\K) < ε. Since A is relatively compact, by Theorem 50.D of [H] there exists a relatively
compact open set V such that Ā ⊂ V . Then W = U ∩ V is an open set belonging to δ(C) by
Lemma 18.2 of [P11], K ⊂ A ⊂W and ||ωc||(W\K) < ε. Hence the lemma holds.

Theorem 20.6 (Variants of the generalized Lusin’s theorem). Let X be an lcHs. Let
mc : Bc(T ) → X (resp. nc : δ(C) → X, m0 : B0(T ) → X, n0 : δ(C0) → X) be σ-additive and let
mc be Bc(T )-regular (resp. nc be δ(C)-regular). Suppose f : T → KI is Bc(T )-measurable (resp.
Baire measurable). Let A ∈ Bc(T ) (resp. A ∈ δ(C), A ∈ B0(T ), A ∈ δ(C0)) such that f(t) = 0
for t ∈ T\A and let ε > 0. Then, given q ∈ Γ, there exists gq ∈ Cc(T ) such that

||ω||q(N(f − gq)) < ε (20.6.1)

where ω =mc or nc or m0 or n0, as the case may be. Moreover, gq ∈ Cc(T ) can be chosen such
that

||gq||T ≤ ||f ||T . (20.6.2)

We say thatmc (resp. m0) is σ-Borel (resp. Baire) inner regular in T if, given q ∈ Γ and ε > 0,
there exists K ∈ C (resp. K ∈ C0) such that ||mc||q(B) < ε for B ∈ Bc(T ) (resp. B ∈ B0(T )) with
B ⊂ T\K. If mc (resp. m0) is further σ-Borel (resp. Baire) inner regular in T , then the above
results hold for any Bc(T )-measurable (resp. B0(T )-measurable) function f on T with values in KI.

Proof. Without loss of generality we shall assume X to be a normed space. Let R = Bc(T )
and ω = mc, or R = δ(C) and ω = nc or R = B0(T ) and ω = m0 or R = δ(C0) and
ω = n0. By hypothesis and by Lemmas 20.3 and 20.5, ω is R-regular and σ-additive. Then
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there exists a compact set K ∈ R such that K ⊂ A and ||ω||(A\K) < ε
2 . As fχK satisfies

the hypothesis of Lemma 20.4(i) and as mc|δ(C) and m0|δ(C0) are regular and σ-additive by hy-
pothesis and by Lemmas 20.5 and 20.3, by Lemma 20.4(i) there exists g ∈ Cc(T ) such that
||ω||(N(fχK − g)) < ε

2 with ||g||T ≤ ||fχK ||T ≤ ||f ||T . By hypothesis and by Theorem 51.B
of [H], f − g is σ(R)-measurable and hence N(f − g) ∈ σ(R). Since f(t)χK(t) = f(t) for
t ∈ K ∪ (T\A), N(f − g) ⊂ N(fχK − g)∩ (K ∪ (T\A))∪ (A\K), and hence ||ω||(N(f − g)) < ε.
Thus (20.6.1) and (20.6.2) hold.

If mc is σ-Borel (resp. m0 is Baire) inner regular in T , choose K ∈ C (resp. K ∈ C0) such
that ||mc||(B) < ε

2 (resp. ||m0||(B) <
ε
2) for B ∈ Bc(T ) (resp. B ∈ B0(T )) with B ⊂ T\K. Let

ω = mc or m0 as the case may be. Then by the above part there exists g ∈ Cc(T ) such that
||ω||(N(fχK − g)) < ε

2 with ||g||T ≤ ||fχK ||T ≤ ||f ||T and hence as in the proof of (20.2.1) of
Theorem 20.2(i) we have ||ω||(N(f − g)) < ε.

Corollary 20.7. Let X be an lcHs and q ∈ Γ. Suppose m : B(T ) → X is σ-additive and
Borel regular (resp. mc : Bc(T ) → X is σ-additive and σ-Borel regular and moreover, σ-Borel
inner regular in T , m0 : B0(T ) → X is σ-additive and Baire inner regular in T ). Let f : T → KI

be Borel measurable (resp. σ-Borel measurable, Baire measurable). Then given q ∈ Γ, there

exists a sequence (g(q)n ) ⊂ Cc(T ) such that supn ||g
(q)
n ||T ≤ ||f ||T and f(t) = limn g

(q)
n (t) mq-a.e.

in T .

Proof. Without loss of generality we shall assume X to be a normed space. Let R = B(T )
(resp. Bc(T ), B0(T )) and ω = m (resp. mc, m0). Then by Theorems 20.2 and 20.6 there exists
gn ∈ Cc(T ) with ||gn||T ≤ ||f ||T such that ||ω||(N(f − gn)) < 1

2n for n ∈ NI. Let An = N(f − gn)
and let A = lim sup

n
An. Clearly, A ∈ R and ||ω||(A) ≤ ||ω||(

⋃
k≥nAk) <

1
2n−1

→ 0 since ||ω|| is

σ-subadditive on R. Hence ||ω||(A) = 0. Clearly, f(t) = limn gn(t) for t ∈ T\A.

Lemma 20.8. Let X be a sequentially complete lcHs, P = δ(C) or δ(C0) and m : P → X

be σ-additive. Then Cc(T ) ⊂ Lp(σ(P),m) for 1 ≤ p <∞ (see Definition 14.4 of [P10]).

Proof. Let f ∈ Cc(T ) and let q ∈ Γ. Then by Theorem 51.B of [H], f is σ(P)-measurable.
Let supp f = K ∈ C. Then by Theorem 50.D of [H] there exists C0 ∈ C0 such that K ⊂ C0. As
N(f) ⊂ C0, for a Borel set B in KI we have f−1(B)∩N(f) ∈ σ(P)∩C0 = σ(P ∩C0) by Theorem
5.E of [H]. As P ∩ C0 is a σ-ring, it follows that f is P ∩ C0-measurable. Hence there exists a
sequence (sn) of (P∩C0)-simple functions such that sn → f and |sn| ↗ |f | uniformly in T . Then
for A ∈ σ(P), by Theorem 3.5(i) of [P8] we have

||
∫

A

|sn|
pdm−

∫

A

|sk|
pdm||q ≤ |||sn|

p − |sk|
p||T ||m||q(C0)→ 0

as n, k → ∞. As q is arbitrary in Γ and as X is sequentially complete, we conclude that there
exists xA ∈ X such that limn

∫
A |sn|

pdm = xA. This holds for each A ∈ σ(P) and consequently,
by Definition 12.1’ in Remark 12.11 of [P10], |f |p ism-integrable in T and hence f ∈ Lp(σ(P),m).
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Lemma 20.9. Let S = B(T ) or Bc(T ) or B0(T ), X be a sequentially complete lcHs and
m : S → X be σ-additive. Then C0(T ) ⊂ Lp(σ(S),m) = Lp(S,m) for 1 ≤ p <∞.

Proof. Given f ∈ C0(T ), f is bounded and by Theorem 51.B of [H] f is S-measurable and
hence there exists a sequence (sn) of S-simple functions such that sn → f and |sn| ↗ |f | uni-
formly in T . Then arguing as in the last part of the proof of Lemma 20.8 we conclude that
f ∈ Lp(S,m) for 1 ≤ p <∞.

Theorem 20.10. Let X be a sequentially complete (resp. quasicomplete) lcHs and let
1 ≤ p < ∞. Suppose m : P → X is σ-additive when P = δ(C0) or B0(T ); and m : P → X be
σ-additive and P-regular when P = δ(C) or Bc(T ) or B(T ). Then Cc(T ) is dense in Lp(σ(P),m)
(resp. in Lp(m)) and then, given f ∈ Lp(m) (resp. f ∈ Lp(σ(P),m)), q ∈ Γ and ε > 0, there
exists gq ∈ Cc(T ) such that (mq)

•
p(f − gq, T ) < ε (resp. and ||gq||T ≤ ||f ||T ). If P = B0(T ) or

Bc(T ) or B(T ), then C0(T ) is also dense in Lp(σ(P),m) (resp. in Lp(m)).

Proof. By Lemma 20.8, Cc(T ) ⊂ Lp(σ(P),m) for P = δ(C0) or δ(C) and by Lemma 20.9,
Cc(T ) ⊂ C0(T ) ⊂ Lp(σ(P),m) for P = B0(T ) or Bc(T ) or B(T ). When X is quasicomplete,
Lp(σ(P),m) ⊂ Lp(m). Let f ∈ Lp(σ(P),m) (resp. f ∈ Lp(m)). Let q ∈ Γ and ε > 0. Then by
Theorem 15.6 of [P10] there exists a P-simple function s such that (mq)

•
p(f −s, T ) <

ε
2 and when

f ∈ Lp(σ(P),m), by the same theorem we can choose s further to satisfy |s(t)| ≤ |f(t)| for t in
T . Then by Theorems 20.2(ii) and 20.6 there exists gq ∈ Cc(T ) such that ||m||q(N(gq − s)) <
(( ε2)(

1
2||s||T

))p and ||gq||T ≤ ||s||T . Now by Theorem 13.2 and by Proposition 10.14(c) of [P10] we
have

(mq)
•
p(s− gq, T ) = (mq)

•
p(s− gq, N(s− gq))

= sup
x∗∈U0q

(∫

N(s−gq)
|s− gq|

pdv(x∗m)

) 1
p

≤ 2||s||T (||m||q(N(s− gq)))
1
p <

ε

2

and hence, by Theorem 5.13(ii) of [P9] we have

(mq)
•
p(f − gq, T ) ≤ (mq)

•
p(f − s, T ) + (mq)

•
p(s− gq, T ) < ε.

Moreover, for f ∈ Lp(σ(P),m), ||gq||T ≤ ||s||T ≤ ||f ||T . Hence the theorem holds.

Remark 20.11. Restricting the agument in the proof of Theorem 20.10 to real functions, we
have similar results for Lrp(σ(P),m) and L

r
p(m) with Cc(T ) and C0(T ) being replaced by C

r
c (T )

and Cr0(T ), respectively.

Theorem 20.12. Let X be an lcHs and let m : B(T )→ X be σ-additive and Borel regular.
Then mc =m|Bc(T ) (resp. m0 =m|B0(T )) is σ-additive and Bc(T )-regular (resp. and Baire regu-
lar). Consequently,m|δ(C) (resp. m|δ(C0)) is σ-additive and δ(C)-regular (resp. and δ(C0)-regular).
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Proof. Let A ∈ Bc(T ). Then there exists a sequence (Kn) ⊂ C such that A ⊂
⋃∞
1 Kn. Let

q ∈ Γ and ε > 0. Then by hypothesis there exists an open set Un in T such that A∩Kn ⊂ Un with
||m||q(Un\(A∩Kn)) <

ε
2n+1

for n ∈ NI . By Theorem 50.D of [H] there exists a (σ-Borel) relatively
compact open set Vn in T such that Kn ⊂ Vn so that A ∩Kn ⊂ Vn. Let Wn = Un ∩ Vn. Then
W =

⋃∞
1 Wn is a σ-Borel open set in T and A ⊂ W . By hypothesis, there exists K ∈ C such

that K ⊂ A with ||m||q(A\K) < ε
2 . Then K ⊂ A ⊂ W and ||m||q(W\K) < ε. In fact, W\A ⊂⋃∞

1 (Wn\(A ∩ Vn)) ⊂
⋃∞
1 (Wn\(A ∩ Kn)) ⊂

⋃∞
1 (Un\(A ∩ Kn)). As ||m||q is σ-subadditive on

B(T ), we have ||m||q(W\A) < ε
2 . Consequently, ||m||q(W\K) ≤ ||m||q(W\A)+ ||m||q(A\K) < ε

and hence mc is Bc(T )-regular. Then the other results hold by Lemmas 20.3 and 20.5.

21. LUSIN MEASURABILITY OF FUNCTIONS AND SETS

If X is an lcHs andm : P → X is σ-additive, let us recall from Definition 10.6 of [P10] that for

a set A in T , χA ism-measurable if A ∈ σ̃(P)q, the generalized Lebesgue completion of σ(P) with
respect to ||m||q for each q ∈ Γ. In that case, we say that A is m-measurable. When P = B(T )
(resp. δ(C)) and m is further P-regular, we introduce the concept of Lusin m-measurability and
study the inter-relations between the concepts of m-measurability and Lusin m-measurability in
Theorems 21.5 and 21.6. The latter theorems play a key role in Section 22.

Theorem 21.1. Let X be an lcHs and m : B(T )→ X be σ-additive and Borel regular. For
a set A in T the following statements are equivalent:

(i) A is m-measurable.

(ii) Given q ∈ Γ and ε > 0, there exist Kq ∈ C and an open set Uq in T such that Kq ⊂ A ⊂ Uq
and ||m||q(Uq\Kq) < ε.

(iii) Given q ∈ Γ, there exist a Gδ Gq and an Fσ Fq in T such that Fq ⊂ A ⊂ Gq with
||m||q(Gq\Fq) = 0.

(iv) Given q ∈ Γ, there exist a disjoint sequence (K(q)n )∞1 ⊂ C and a Gδ Gq in T such that

Fq =
⋃∞
n=1K

(q)
n ⊂ A ⊂ Gq with ||m||q(Gq\Fq) = 0.

(v) For each q ∈ Γ, A ∩K ∈ B̃(T )q for each K ∈ C.

(vi) For each q ∈ Γ, A ∩ U ∈ B̃(T )q for each open set U in T .

Proof. Without loss of generality we shall assume X to be a normed space.

(i)⇒(ii) By the Borel regularity of m and by the fact that the m-measurable set A is of the
form A = B ∪N , N ⊂M ∈ B(T ), B ∈ B(T ) and ||m||(M) = 0, (i)⇒(ii).

(ii)⇒(iii) By (ii), for ε = 1
n , n ∈ NI, there exist a compact Kn and an open set Un in T such

that Kn ⊂ A ⊂ Un with ||m||(Un\Kn) <
1
n . Let G =

⋂∞
1 Un and F =

⋃∞
1 Kn. Then G is a
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Gδ, F is an Fσ, F ⊂ A ⊂ G and ||m||(G\F ) ≤ ||m||(Un\Kn) <
1
n for each n ∈ NI and hence

||m||(G\F ) = 0.

(iii)⇒(i) Let F ⊂ A ⊂ G. F an Fσ, G a Gδ with ||m||(G\F ) = 0. Then A = F ∪ (A\F ),

A\F ⊂ G\F , (G\F ) ∈ B(T ) and ||m||(G\F ) = 0. Hence A ∈ B̃(T ) and hence (i) holds.

Thus (i), (ii) and (iii) are equivalent.

(i)⇔(ii)⇒(iv) By hypothesis, there exists K1 ∈ C such that K1 ⊂ A and ||m||(A\K1) < 1.

Since A\K1 ∈ B̃(T ), by (ii) there exists K2 ∈ C such that K2 ⊂ A\K1 and ||m||(A\(K1 ∪K2)) <
1
2 . Proceeding step by step, in the n

th step we would have chosen mutually disjoint compact
sets (K1)n1 such that

⋃n
1 Ki ⊂ A with ||m||(A\

⋃n
1 Ki) <

1
n . Then F =

⋃∞
1 Ki ⊂ A and

||m||(A\F ) = 0. Moreover, by (iii)⇔(i) there exists a Gδ G such that A ⊂ G and ||m||(G\A) = 0.
Hence (iv) holds.

(iv)⇒(i) Let F and G be as in the hypothesis. Then F, G ∈ B(T ) and ||m||(G\F ) = 0. Since

A = F ∪ (A\F ), it follows that A ∈ B̃(T ) and hence (i) holds.

Thus (i),(ii), (iii) and (iv) are equivalent.

(i)⇒(v) obviously.

(v)⇒(vi) Let U be an open set in T . Then U ∈ B(T ) and hence (iv) holds. Thus there
exists (Kn)

∞
1 ⊂ C such that

⋃∞
1 Kn ⊂ U and N = U\

⋃∞
1 Kn is m-null. Then by (v),

A ∩ U =
⋃∞
1 (A ∩Kn) ∪ (A ∩N) ∈ B̃(T ). Hence (vi) holds.

(vi)⇒(i) by taking U = T .

Hence (i)⇒(v)⇒(vi)⇒(i).

This completes the proof of the theorem.

Theorem 21.2. Let X be an lcHs and let n : δ(C)→ X be σ-additive and δ(C)-regular. For
a set A in T the following statements are equivalent:

(i) A is n-measurable.

(ii) Given q ∈ Γ, there exist a σ-compact Fq and a Gδ Gq ∈ Bc(T ) such that Fq ⊂ A ⊂ Gq with
||n||q(Gq\Fq) = 0.

(iii) A is σ-bounded and A ∩K ∈ B̃c(T )q for each K ∈ C and for each q ∈ Γ.

(iv) A is σ-bounded and A ∩ U ∈ B̃c(T )q for each open set U in T and for each q ∈ Γ.
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Proof. Without loss of generality we shall assume X to be a normed space.

(i)⇒(ii) By hypothsis, A is of the form A = B ∪ N , B ∈ Bc(T ), N ⊂ M ∈ Bc(T ) and
||n||(M) = 0. As (B ∪M) ∈ Bc(T ), there exists (Kn)

∞
1 ⊂ C such that (B ∪M) ⊂

⋃∞
1 Kn so

that B ∪M =
⋃∞
1 ((B ∪M) ∩Kn). Then by Lemma 18.2 of [P11], ((B ∪M) ∩Kn)

∞
1 ⊂ δ(C).

As n is δ(C)-regular, given ε > 0, there exists an open set Vn in T such that Vn ∈ δ(C) and
such that (B ∪M) ∩ Kn ⊂ Vn with ||n||(Vn\((B ∪M) ∩ Kn)) <

ε
2n . Then U =

⋃∞
1 Vn is an

open set in T belonging to Bc(T ), (B ∪M) ⊂ U and ||n||(U\(B ∪M)) < ε. Hence A ⊂ U and
||n||(U\A) < ε. By taking ε = 1

n , n ∈ N, we obtain open sets Un ∈ Bc(T ) such that A ⊂ Un
and ||n||(Un\A) < 1

n . Then G =
⋂∞
1 Un is a Gδ, G ∈ Bc(T ), A ⊂ G and ||n||(G\A) = 0. As

n is δ(C)-regular, given k ∈ NI, there exists C(k)n ∈ C such that C(k)n ⊂ B ∩ Kn ∈ δ(C) with

||n||(B ∩ Kn)\C
(k)
n ) <

1
k ∙

1
2n for n ∈ NI. If Fk =

⋃∞
n=1C

(k)
n , then F =

⋃∞
1 Fk is σ-compact,

F ⊂ B ⊂ A and ||n||(A\F ) = ||n||(B\F ) = 0. Then F ⊂ A ⊂ G with ||n||(G\F ) = 0 and hence
(ii) holds.

(ii)⇒(i) since A = F ∪ (A\F ), F ∈ Bc(T ), A\F ⊂ (G\F ) ∈ Bc(T ) and ||n||(G\F ) = 0.

Thus (i)⇔(ii).

(i)⇒(iii) and (iv) Take B,N and M as in the proof of ’(i)⇒(ii)’. Clearly A is σ-bounded.

For K ∈ C, B ∩K ∈ Bc(T ) and N ∩K is n-null so that N ∩K ∈ B̃c(T ). Hence A ∩K ∈ B̃c(T ).
For an open set U in T , U ∩ B is σ-bounded and hence U ∩ B ∈ Bc(T ) and U ∩N is n-null so

that U ∩N ∈ B̃c(T ). Hnce U ∩A ∈ B̃c(T ).

(iii)⇒(i) As A is σ-bounded, there exists (Kn)
∞
1 ⊂ C such that A ⊂

⋃∞
1 Kn so that by

hypothesis, A =
⋃∞
1 (A ∩Kn) ∈ B̃c(T ).

(iv)⇒(i) As A is σ-bounded, by Theorem 50.D of [H] there exists relatively compact open

sets (Un)∞1 in T such that A ⊂
⋃∞
1 Un. Then A =

⋃∞
1 (A ∩ Un) ∈ B̃c(T ) by (iv).

Hence (i)↔(iii)↔(iv).

This completes the proof of the theorem.

Definition 21.3. Let X be an lcHs and let m : B(T ) → X (resp. n : δ(C) → X) be
σ-additive and B(T )-regular (resp. and δ(C)-regular). Then a functon f : T → KI is said to be
Lusin m-measurable (resp. Lusin n-measurable) if, given q ∈ Γ, ε > 0 and K ∈ C, there exists

aK(q)0 ⊂ K such that f |
K
(q)
0

is continuous and ||m||q(K\K
(q)
0 ) < ε (resp. and ||n||q(K\K

(q)
0 ) < ε).

Theorem 21.4. Let X, m, n and f be as in Definition 21.3. Then f is Lusin m-measurable
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(resp. Lusin n-measurable) if and only if, given q ∈ Γ and K ∈ C, there exist anmq-null set (resp.

nq-null set) Nq ⊂ K and a countable disjoint family (K(q)i )
∞
1 ⊂ C such that K =

⋃∞
i=1K

(q)
i ∪Nq

and f |
K
(q)
i

is continuous for each i ∈ NI.

Proof. Without loss of generality we shall assume X to be a normed space. Let P = B(T )
and ω = m or P = δ(C) and ω = n. Let f be Lusin ω-measurable and K ∈ C. Then by
Definition 21.3 there exists K1 ∈ C such that K1 ⊂ K, f |K1 is continuous and ||ω||(K\K1) < 1.
Let n > 1 and suppose we have chosen (K1)n1 ⊂ C mutually disjoint such that

⋃n
1 Ki ⊂ K, f |Ki is

continuous for 1 ≤ i ≤ n and ||ω||(K\
⋃n
1 Ki) <

1
n . As K\

⋃n
1 Ki ∈ δ(C), by the regularity of ω

there exists a compact C ⊂ K\
⋃n
1 Ki such that ||ω||(K\(

⋃n
1 Ki ∪ C)) < 1

2(n+1) . By hypothesis

there exists a compact Kn+1 ⊂ C such that f |Kn+1 is continuous and ||ω||(C\Kn+1) <
1

2(n+1) .

Then (Ki)
n+1
1 ⊂ C are mutually disjoint,

⋃n+1
1 Ki ⊂ K and ||ω||(K\

⋃n+1
1 Ki) <

1
n+1 . Therefore,

by induction there exists a disjoint sequence (Ki)
∞
1 ⊂ C such that f |Ki is continuous for all i

and ||ω||(K\
⋃n
1 Ki) <

1
n for all n. Then N = K\

⋃∞
1 Ki is ω-null and f |Ki is continuous for all i.

Conversely, let K ∈ C and suppose K =
⋃∞
1 Ki ∪ N , where (Ki)

∞
1 ⊂ C, Ki ∩ Kj = ∅ for

i 6= j, f |Ki is continuous for each i and ||ω||(N) = 0. Let ε > 0. As K\
⋃n
1 Ki ∈ P for all n,

K\
⋃n
1 Ki ↘ N ∈ δ(C) and as ||ω|| is continuous on P by Proposition 2.1 of [P8], there exists n0

such that ||ω||(K\
⋃n0
1 Ki) < ε. Clearly, K0 =

⋃n0
1 Ki ∈ C, K0 ⊂ K and f |K0 is continuous since

Ki are mutually disjoint. Hence f is Lusin ω-measurable.

Theorem 21.5. Let X be an lcHs, m : B(T ) → X be σ-additive and Borel regular and
f : T → KI. Then f is Lusin m-measurable if and only if it is m-measurable.

Proof. Without loss of generality we shall assume X to be a normed space. Let f be m-
measurable, K ∈ C and ε > 0. Then fχK is m-measurable and hence by Proposition 2.10 of [P8]
there exists N ∈ B(T ) with ||m||(N) = 0 such that h = fχK\N is B(T )-measurable. Then by
Theorem 20.2(i) there exists g ∈ Cc(T ) such that ||m||(N(h− g)) < ε

2 . Let A = N(h− g). Then
A ∈ B(T ) and hence by the Borel regularity of m there exists a compact K0 ⊂ K\A such that
||m||(K\A\K0) < ε

2 . Then h|K0 = f |K0 = g|K0 is continuous and ||m||(K\K0) < ε. Hence f is
Lusin m-measurable.

Conversely, let f be Lusin m-measurable. Given K ∈ C, by Theorem 21.4 there exist a dis-
joint sequence (Ki)

∞
1 ⊂ C and an m-null set N disjoint with

⋃∞
1 Ki such that K =

⋃∞
1 Ki ∪N

and such that f |Ki is continuous for each i. Let U be an open set in KI. Then f−1(U) ∩ K =⋃∞
1 (f

−1(U)∩Ki)∪ (f−1 ∩N). As f |Ki is continuous, there exists an open set Vi in T such that

f−1(U) ∩Ki = Vi ∩Ki and hence f−1(U) ∩K =
⋃∞
1 (Vi ∩Ki) ∪ (f−1(U) ∩N) ∈ B̃(T ). Then by

Theorem 21.1(v), f is m-measurable.

Theorem 21.6. Let X be an lcHs, n : δ(C) → X be σ-additive and δ(C)-regular and
f : T → KI. Then f is n-measurable if and only if N(f) is σ-bounded and f is Lusin n-measurable.
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Proof. Without loss of generality we shall assume X to be a normed space. Let f be n-

measurable. Then N(f) ∈ B̃c(T ) and hence N(f) is σ-bounded. Let K ∈ C and ε > 0. Then
by Proposition 2.10 of [P8] there exists N ∈ Bc(T ) with ||n||(N) = 0 such that fχT\N is Bc(T )-
measurable. Then fχK\N is Bc(T )-measurable. Hence by Theorem 20.6 there exists g ∈ Cc(T )
such that ||n||(N(fχK\N − g)) < ε

2 . Let A = N(g − fχK\N ). Then A ∈ Bc(T ) and hence
K\A ∈ δ(C) by Lemma 18.2 of [P11]. Then by the δ(C)-regularity of n there exists a compact
K0 ⊂ K\A such that ||n||(K\A\K0) < ε

2 . Then f |K0 = g|K0 is continuous and ||n||(K\K0) < ε.
Hence f is Lusin n-measurable.

Conversely, let f be Lusin n-measurable and let N(f) be σ-bounded. Let K ∈ C. Then by
Theorem 21.4 there exist a disjoint countable family (Ki)

∞
1 ⊂ C and an n-null set N disjoint with⋃∞

1 Ki such that K =
⋃∞
1 Ki ∪N and f |Ki is continuous for each i. Let U be an open set in KI.

If fi = f |Ki , then by the continuity of fi we have f
−1(U\{0}) ∩Ki = f−1i (U\{0}) ∈ B(Ki) and

hence N(f) ∩ f−1(U) ∩K =
⋃∞
1 (f

−1(U\{0}) ∩Kn) ∪ (N ∩ f−1(U\{0})) ∈ B̃c(T ). As N(f) is

σ-bounded by hypothesis, it follows by Theorem 21.2(v) that N(f)∩ f−1(U) ∈ B̃c(T ) and hence
f is n-measurable.

Corollary 21.7. Let X be an lcHs and letm : B(T )→ X (resp. n : δ(C)→ X) be σ-additive
and Borel regular (resp. and δ(C)-regular). Then a Borel measurable scalar function f on T is
Lusin m-measurable (resp. Lusin n-measurable).

Proof. Let f be Borel measurable. Then f ism-measurable and hence is Lusinm-measurable
by Theorem 21.5. Let K ∈ C. Then by Lemma 18.2 of [P11], fχK is Bc(T )-measurable and
hence n-measurable. Clearly, N(fχK) is σ-bounded. Hence by Theorem 21.6, fχK is Lusin
n-measurable. As K is arbitrary in C, it follows that f is Lusin n-measurable.

Definition 21.8. Let X be an lcHs and let m : B(T ) → X (resp. n : δ(C) → X) be
σ-additive and Borel regular (resp. and δ(C)-regular). Then a set A in T is said to be Lusin
m-measurable (resp. Lusin n-measurable) if χA is so.

The following theorem is immediate from Definition 21.8 and Theorem 21.4.

Theorem 21.9. Let X, m and n be as in Definition 21.8. Let A ⊂ T . Then A is Lusin
m-measurable (resp. Lusin n-measurable) if for each q ∈ Γ and K ∈ C, there exist a disjoint

sequence (K(q)i )
∞
1 ⊂ C and anmq-null set (resp. and an nq-null set) Nq disjoint with

⋃∞
1 Ki such

that K =
⋃∞
1 K

(q)
i ∪Nq and such that, for each i, K

(q)
i ⊂ A or K

(q)
i ⊂ T\A.

Using Theorem 21.1(iv) and the Borel regularity of m, the proof of Proposition 4, no.2, §5,
Ch. IV of [B] can be adapted to prove the following

Theorem 21.10 (Localization principle). Let X be an lcHs and let m : B(T ) → X be
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σ-additive and Borel regular. Let f : T → KI and suppose for each t ∈ T and q ∈ Γ, there
exist an open neighborhood V (q)t of t and a Lusin mq-measurable scalar function g

(q)
t such that

f(t′) = g
(q)
t (t

′) mq-a.e. in V
(q)
t . Then f is Lusin m-measurable.

As in the classical case of [B], the above theorem motivates the following

Definition 21.11. Let X and m be as in Theorem 21.10. A set A in T is said to be locally
m-null (briefly, loc. m-null) if, for each t ∈ T , there exists an open neighborhood Vt of t such
that A ∩ Vt is m-null. (See Definition 10.3 of [P10].)

The proof of the following theorem is similar to those on pp. 172-173 of [B] and is based on
Theorems 21.1(iv), 21.5 and 21.10 and hence is omitted.

Theorem 21.12. Let X be an lcHs and let m : B(T )→ X be σ-additive and Borel regular.
Then:

(i) Locally m-null sets are m-measurable.

(ii) If A is loc. m-null, then all the subsets of A are also loc. m-null.

(iii) A is loc. m-null if and only if A ∩K is m-null for each K ∈ C.

(iv) If Ai, i ∈ NI, are locally m-null, then
⋃∞
1 Ai is also loc. m-null.

(v) A is loc. m-null if and only if A is m-null. (Use (i) and Theorem 21.1(iv).)

(vi) f : T → KI and N = {t ∈ T : f is discontinuous in t} is loc. m-null, then f ism-measurable.

22. THEOREMS OF INTEGRABILITY CRITERIA

The aim of the present section is to improve Theorem 4.2 of [P8] and Theorem 12.2 of [P10]
for δ(C)-regular σ-additive vector measures on δ(C). The said improvement of Theorem 4.2 of
[P8] is given in the last part of Therem 22.4 which gives much stronger results and Theorem 22.5
improves Theorem 12.2 of [P10]. We also generlize Theorem 22.4 to complete lcHs valued vector
measures. The proofs of Lemmas 3.10 and 3.14, Propositions 2.17, 2.20 and 3.7 and Theorems
3.5, 3.13 and 3.20 of [T] are adapted here in the set-up of vector measures.

Recall from Notation 19.2 of [P11] that V denotes the family of relatively compact open sets
in T .

Lemma 22.1. Let X be a Banach space and let H be a norm determining set in X∗. Let P
be a δ-ring of subsets of a set Ω( 6= ∅) and let m : P → X be additive. Then:

(i) ||m||(A) = supx∗∈H v(x
∗ ◦m)(A), A ∈ σ(P).
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(ii) Suppose m is σ-additive and f : Ω → KI is m-measurable and (x∗ ◦m)-integrable for each
x∗ ∈ H. If, for each ε > 0, there exists gε ∈ L1(m) such that supx∗∈H

∫
T |f−gε|dv(x

∗◦m) <
ε, then f ∈ L1(m).

Proof. (i) This is proved by an argument similar to that in the proof of Proposition 10.12(iii)
of [P10].

(ii) Let νx∗(∙) =
∫
(∙) fd(x

∗ ◦m), x∗ ∈ H. Then by hypothesis and by Proposition 5, §8 of

[Din], νx∗ is σ-additive on σ(P) and by Proposition 2.11 of [P8], v(νx∗)(A) =
∫
A |f |dv(x

∗ ◦m)
for A ∈ σ(P). Let

η(f) = sup
x∗∈H

∫

T

|f |dv(x∗ ◦m).

If f ∈ L1(m), then by (ii) and (iii) of Theorem 3.5 and by Remark 4.3 of [P8], γ(∙) =
∫
(∙) fdm is

σ-additive on σ(P) and ||γ||(T ) = sup|x∗|≤1
∫
T |f |dv(x

∗ ◦m). Consequently, by (i) above and by
Theorem 5.3 of [P9] we have

m•1(f, T ) = sup
|x∗|≤1

∫

T

|f |dv(x∗ ◦m) = ||γ||(T )

= sup
x∗∈H

v(x∗ ◦ γ)(T ) = sup
x∗∈H

∫

T

|f |dv(x∗ ◦m) = η(f). (22.1.1)

Let Σ = {f : T → KI, fm-measurable and (x∗ ◦m)-integrable for each x∗ ∈ H with η(f) <
∞}. For f ∈ L1M(m) (see Definition 5.9 of [P9]), we have η(f) = supx∗∈H

∫
T |f |dv(x

∗ ◦m) ≤
m•1(f, T ) <∞ and hence L1M(m) ⊂ Σ. Clearly, η is a seminorm on Σ.

Claim 1. L1(m) is closed in (Σ, η).

In fact, let (fn)∞1 ⊂ L1(m) and let f ∈ Σ such that η(fn − f) → 0. Then by (22.1.1),
(fn)

∞
1 is Cauchy in L1(m). Hence by Theorem 6.8 of [P9], there exists g ∈ L1(m) such that

limnm
•
1(fn − g, T ) = 0. Since H ⊂ {x

∗ ∈ X∗ : |x∗| ≤ 1} by Lemma 18.13 of [P11], η(fn − g) ≤
m•1(fn−g, T )→ 0 as n→∞. Then η(f−g) ≤ η(f−fn)+η(fn−g)→ 0 and hence η(f−g) = 0.
Clearly, f−g ism-measurable and hence N(f−g) = B∪N , where B ∈ σ(P) and N ⊂M ∈ σ(P)
with ||m||(M) = 0. Then by (i) or by the fact that H ⊂ {x∗ : |x∗| ≤ 1}, v(x∗ ◦m)(M) = 0 for
x∗ ∈ H. Now supx∗∈H

∫
B∪M |f − g|dv(x

∗ ◦m) = supx∗∈H
∫
B |f − g|dv(x

∗ ◦m) ≤ η(f − g) = 0
and hence v(x∗ ◦m)(B) = 0 for x∗ ∈ H. Then by (i), ||m||(B) = supx∗∈H v(x

∗ ◦m)(B) = 0 so
that ||m||(N(f − g)) = 0. Therefore, f = g m-a.e. in T and hence f ∈ L1(m). Thus the claim
holds.

By hypothesis and by (22.1.1) we have
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sup
x∗∈H

∫

T

|f |dv(x∗ ◦m) ≤ sup
x∗∈H

∫

T

|gε|dv(x
∗ ◦m) + sup

x∗∈H

∫

T

|f − gε|dv(x
∗ ◦m)

< m•1(gε, T ) + ε <∞

and hence f ∈ Σ. Moreover, the hypothesis in (ii) implies that f belong to the η-closure of L1(m)
in Σ. Then by Claim 1, f ∈ L1(m).

Lemma 22.2. Let X and H be as in Lemma 22.1. Let m : δ(C)→ X (resp. m : B(T )→ X)
be σ-additive. Let V ∈ V . Then there exist a sequence (x∗n) in H and a sequence (cn) of positive
numbers such that

lim
λ(A)→0

||m||(A) = 0

for A ∈ B(V ) (resp. for A ∈ B(T )), where

λ =
∞∑

1

cnv(x
∗
n ◦m)

is σ-additive and finite on B(V ) (resp. on B(T )). (Note that in the case of m-defined on δ(C),
(x∗n) and λ depend on V ). Consequently, A ∈ B(V ) (resp. A ∈ B(T )) is m-null if and only if A is
(x∗ ◦m)-null for each x∗ ∈ H. If m is further δ(C)-regular (resp. B(T )-regular) and if f : T → KI

is (x∗ ◦m)-measurable for each x∗ ∈ H, then f is Lusin m-measurable as well as m-measurable.

Proof. Let V ∈ V . As m is σ-additive on δ(C) (resp. on B(T )) and as H is norm bounded by
Lemma 18.13 of [P11], {x∗ ◦m : x∗ ∈ H} is bounded and uniformly σ-additive on B(V ) (resp.
on B(T )) and hence by the proof of Theorem IV.9.2 and by Theorem IV.9.1 of [DS], there exist
(x∗n)

∞
1 ⊂ H and cn > 0, n ∈ NI, such that λ =

∑∞
1 cnv(x

∗
n ◦m) is σ-additive and finite on B(V )

(resp. on B(T )) and satisfies
lim

λ(A)→0
sup
x∗∈H

v(x∗ ◦m)(A) = 0

for A ∈ B(V ) (resp. A ∈ B(T )). Then by Lemma 22.1(i),

lim
λ(A)→0

||m||(A) = 0 forA ∈ B(V ) (resp. A ∈ B(T )). (22.2.1)

If A ∈ B(V ) (resp. A ∈ B(T )) is x∗ ◦m-null for each x∗ ∈ H, then λ(A) = 0 and hence
||m||(A) = 0 so that A is m-null. The converse is trivial.

Now let us assume that m is further δ(C)-regular (resp. B(T )-regular). Let K ∈ C and let
ε > 0. Choose V ∈ V such that K ⊂ V . Choose (x∗n)

∞
1 ⊂ H and cn > 0, n ∈ NI, and λ as above.

By (22.2.1), there exists δ > 0 such that ||m||(A) < ε whenever λ(A) < δ for A ∈ B(V ) (resp. for
A ∈ B(T )). By hypothesis, f is (x∗n ◦m)-measurable and hence by Theorem 21.6 (resp. by The-
orem 21.5) f is Lusin (x∗n ◦m)-measurable. Therefore, for each n ∈ NI, there exists Kn ∈ C such
that Kn ⊂ K, f |Kn is continuous and v(x

∗
n ◦m)(K\Kn) <

δ
2ncn

. Then K0 =
⋂∞
1 Kn ∈ C, f |K0 is
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continuous and λ(K\K0) ≤
∑∞
1 cnv(x

∗
n ◦m)(K\Kn) < δ. Hence ||m||(K\K0) < ε. Therefore, f

is Lusin m-measurable. When m is defined on B(T ), then by Theorem 21.5, f is m-measurable.
If m is defined on δ(C), then by hypothesis, f is (x∗ ◦m)-measurable for x∗ ∈ H and hence,
given x∗ ∈ H, there exist Nx∗ , Mx∗ and Bx∗ such that Bx∗ ∈ Bc(T ), Nx∗ ⊂ Mx∗ ∈ Bc(T ) and
||m||(Mx∗) = 0 and such that N(f) = Bx∗ ∪Nx∗ . Hence N(f) is σ-bounded and consequently, f
is m-measurable by Theorem 21.6.

In the sequel, K(T ) is as in Notation 19.1 of [P11].

Theorem 22.3. Let μi : δ(C) → KI be σ-additive and δ(C)-regular for i ∈ I. Suppose∑
i∈I |

∫
T ϕdμi|

p < ∞ for each ϕ ∈ K(T ) and for 1 ≤ p < ∞. Let u : K(T ) → lp(I) be defined
by u(ϕ) = (

∫
T ϕdμi)i∈I . Then u is a prolongable Radon operator on K(T ). Let mu be the

representing measure of u. (See Definitions 19.5 and 19.6 and Theorem 19.9 of [P11].) Let
f : T → KI belong to L1(μi) for i ∈ I. Then f is mu-integrable in T if and only if

∑

i∈I

|
∫

U

fdμi|
p <∞ (22.3.1)

for each open Baire set U in T . In that case,
∫
T fdmu = (

∫
T fdμi)i∈I .

Let p = 1 and let f ∈ L1(mu). If θ(ϕ) =
∑

i∈I

∫
T ϕdμi for ϕ ∈ K(T ), then θ ∈ K(T )

∗, f is
μθ-integrable and ∫

A

fdμθ =
∑

i∈I

∫

A

fdμi

for A ∈ Bc(T ), where μθ is the complex Radon measure induced by θ in the sense of Definition
4.3 of [P1].

Proof. Let us recall from Notation 19.1 of [P11] that the topology of K(T ) is the inductive
limit locally convex topology on Cc(T ) induced by the family (Cc(T,C), IC) where Cc(T,C) are
provided with the topology τu of uniform convergence. Clearly, Cc(T,C) are Banach spaces.
Let u : K(T ) → `p(I) be given by u(ϕ) = (

∫
T ϕdμi)i∈I . Clearly, u is linear. We claim that

u has a closed graph. In fact, let ϕα → ϕ in K(T ). As μi ∈ K(T )∗ (see Section 5 of [P2]),∫
T ϕαdμi →

∫
T φdμi for each i ∈ I. Suppose u(ϕα) → (fi)i∈I ∈ `p(I). Then given ε > 0, there

exist J ⊂ I, J finite, and an α0, such that
∑

i∈J |
∫
T ϕαdμi − fi|

p < ( ε2)
p for α ≥ α0. Moreover,

there exists α1 ≥ α0 such that
∑

i∈J |
∫
T ϕαdμi −

∫
T ϕdμi|

p < ( ε2)
p as

∫
T ϕαdμi →

∫
T ϕdμi for

each i. Then

(
∑

i∈J

|
∫

T

ϕdμi − fi|
p)
1
p ≤ (

∑

i∈J

|
∫

T

ϕdμi −
∫

T

ϕαdμi|
p)
1
p + (

∑

i∈J

∫

T

|ϕαdμi − fi|
p)
1
p

< ε
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for α ≥ α1. Thus, for i ∈ J ,

|
∫

T

ϕdμi − fi| ≤ (
∑

j∈J

|
∫

T

ϕdμj − fj |
p)
1
p < ε.

Since ε is arbitrary,
∫
T ϕdμi = fi. If i 6∈ J , by the same argument with J ∪ {i} in place of J , we

have
∫
ϕdμi = fi for each i ∈ I. Thus (fi)i = u(ϕ) and hence the graph of u is closed.

Since Cc(T,C) is a Banach space, any linear mapping from Cc(T,C) into `p(I) with closed
graph is continuous by the closed graph theorem (see Theorem 2.15 of [Ru2]) and hence by Prob-
lem C(i), Sec. 16, Ch. 5 of [KN], u is a continuous linear mapping.

Let V ∈ V and uV (ϕ) = u(ϕ) for ϕ ∈ Cc(V ).Then clearly uV : Cc(V ) → `p(I) is continuous
and its continuous extension ũV : C0(V )→ `p(I) is weakly compact by by Theorem 13 of [P5] or
by Corollary 2 of [P6] since c0 6⊂ `p(I) for 1 ≤ p < ∞ (as `1(I) is weakly sequentially complete
and as `p(I) is reflexive for 1 ≤ p < ∞.) Hence u is a prolongable Radon operator on K(T )
and hence by Theorem 19.9 of [P11] its representing measure mu : δ(C) → `p(I), 1 ≤ p < ∞, is
σ-additive and δ(C)-regular and

u(ϕ) =

∫

T

ϕdmu, ϕ ∈ Cc(T ) (22.3.2)

where the integral is a (BDS)-integral.

For 1 < p < ∞, let H(p)I = {(αi)i∈I ∈ `q(I) :
∑

i∈I |αi|
q ≤ 1, αi = 0 for i ∈ I\J, where J ⊂

I, J finite} where 1p+
1
q = 1. For p = 1, let H

(1)
I = {(αi)i∈I ∈ `∞(I) : supi∈I |αi| ≤ 1, αi = 0 for i ∈

I\J, where J ⊂ I, J finite}. Clearly, H(p)I is a norm determining set for `p(I), 1 ≤ p <∞.

Claim 1. Let x∗ = (αi)i∈I ∈ H
(p)
I , 1 ≤ p <∞, where αi = 0 for i ∈ I\Jx∗ , Jx∗ ⊂ I and finite.

Then x∗ ◦mu =
∑

i∈I αiμi =
∑

i∈Jx∗
αiμi.

In fact, by Theorem 11.8(v) and Remark 12.5 of [P10] and by (22.3.2) we have
∫

T

ϕd(x∗ ◦mu) = x
∗u(ϕ) =

∑

i∈I

αi

∫

T

ϕdμi =

∫

T

ϕd(
∑

i∈Jx∗

αiμi) (22.3.3)

for ϕ ∈ K(T ). Let V ∈ V . Then, for ϕ ∈ Cc(V ), by (22.3.3) we have
∫
T ϕd(x

∗ ◦ (mu)V =
x∗uV (ϕ) = x

∗u(ϕ) =
∫
T ϕd(

∑
i∈Jx∗

αiμi), where (mu)V =mu|B(V ). As x
∗◦(mu)V and μi|B(V ) are

σ-additive and B(V )-regular, by the uniqueness part of the Riesz representation theorem we con-
clude that x∗ ◦ (mu)V =

∑
i∈I αiμi|B(V ). Since V is arbitrary in V and since δ(C) =

⋃
V ∈V B(V ),

it follows that x∗ ◦mu =
∑

i∈Jx∗
αiμi =

∑
i∈I αiμi. Hence the claim holds.

Let ϕ ∈ C0(T ). By hypothesis, f ∈ L1(μi) for i ∈ I and ϕ is Bc(T )-measurable by Theorem
51.B of [H] and is bounded. Hence fϕ ∈ L1(μi) for i ∈ I. Let

θi(ϕ) =

∫

T

fϕdμi, ϕ ∈ C0(T )
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for i ∈ I. Then θi is a bounded linear functional on C0(T ) and hence the complex Radon measure
μθi induced by θi is a σ-additive B(T )-regular scalar measure on B(T ) by Theorems 3.3 and 4.6
of [P2]. On the other hand,

Claim (*). ηi(∙) =
∫
(∙) fdμi is σ-additive on Bc(T ) and ηi is v(μi)-continuous, i ∈ I .(In

symbols, ηi � v(μi).)

In fact, v(μi) : Bc(T ) → [0,∞] is σ-additive by Property 9, § 3, Ch. I of [Din] and
v(μi)(E) = 0, E ∈ Bc(T ) implies v(ηi)(E) = 0. Then by Theorem 6.11 of [Ru1] (whose proof is
valid for σ-rings too) we conclude that v(ηi) is v(μi)-continuous on Bc(T ) and hence ηi is v(μi)-
continuous.

Therefore, v(ηi)� v(μi) on δ(C) and consequently, ηi, i ∈ I, are δ(C)-regular. Moreover, for
ϕ ∈ C0(T ), we have

∫

T

ϕdηi =

∫

T

ϕfdμi = θi(ϕ) =

∫

T

ϕdμθi , i ∈ I. (22.3.4)

Thus, for V ∈ V and ϕ ∈ Cc(V ), we have
∫
T ϕdηi|B(V ) =

∫
T ϕdμθi |B(V ) and hence by the

uniqueness part of the Riesz representation theorem, we have ηi|B(V ) = μθi |B(V ). As V is arbitrary
in V , we conclude that

ηi|δ(C) = μθi |δ(C). (22.3.5)

Since v(ηi)(T ) =
∫
T |f |dv(μi) < ∞ by Proposition 2.11 of [P8] and by the hypothesis that

f ∈ L1(μi) and since σ(δ(C)) = Bc(T ), we conclude that

ηi = μθi |Bc(T ) (22.3.6)

for i ∈ I. Then by Theorem 2.4 of [P2], ηi is Bc(T )-regular for i ∈ I.

Let x∗ = (αi) ∈ H
(p)
I . Then there exists a finite set Jx∗ ⊂ I such that αi = 0 for i ∈ I\Jx∗ .

Let Ψx∗ =
∑

i∈Jx∗
αiθi. Then Ψx∗ is a bounded linear functional on C0(T ) and Ψx∗(ϕ) =∑

i∈Jx∗
αiθi(ϕ) =

∫
T ϕd(

∑
i∈Jx∗

αiμθi) by (22.3.4). Then arguing as in the proof of (22.3.5) and
using (22.3.6), we have

μΨx∗ =
∑

i∈Jx∗

αiμθi on B(T ) andμψx∗ |Bc(T ) =
∑

i∈Jx∗

αiηi. (22.3.7)

Claim 2. sup
x∗∈H(p)I

v(μΨx∗ ,B(T ))(T ) =M (say) <∞ for 1 ≤ p <∞.

In fact, let U be an open Baire set in T and let 1 < p <∞. Then by hypothesis (22.3.1), by
(22.3.7) and by Hölder’s inequality, we have
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sup
x∗∈H(p)I

|μΨx∗ (U)| = sup
x∗=(αi)i∈H

(p)
I

|
∑

i∈Jx∗

αiηi(U)|

= sup
x∗∈H(p)I

|x∗(
∫

U

fdμi)i∈I |

≤ sup
x∗∈H(p)I

|x∗|q(
∑

i∈I

|
∫

U

fdμi|
p)
1
p

≤ (
∑

i∈I

|
∫

U

fdμi|
p)
1
p <∞ (22.3.8)

where 1p +
1
q = 1. If p = 1, by (22.3.1) and by (22.3.7) we have

sup
x∗∈H(1)I

|μΨx∗ (U)| = sup
x∗=(αi)i∈H

(1)
I

|
∑

i∈Jx∗

αiηi(U)|

≤ sup
x∗∈H(1)I

|x∗(
∫

U

fdμi)i∈I |

= sup
x∗∈H(1)I ,x∗=(αi)i∈I

∑

i∈I

|αi

∫

U

fdμi|

≤
∑

i∈I

|
∫

U

fdμi| <∞. (22.3.8′)

As {μΨx∗ : x
∗ ∈ H(p)I } ⊂M(T ) for 1 ≤ p <∞, the claim holds by (22.3.8) and (22.3.8’) and

by Corollary 18.5 of [P11].

Claim 3. Given ϕ ∈ C0(T ) and ε > 0, there exists a simple function s as a complex linear
combination of the characteristic functions of relatively compact open Baire sets in T such that

||s− ϕ||T <
ε

2M
(22.3.9)

where M is as in Claim 2.

In fact, in the proof of Lemma 18.20(i) of [P11], each of the sets Ei,n is a difference of two open
sets Ui,n, Vi,n in T which are Fσ and in fact, are σ-compact and relatively compact as suppϕ is
compact. Then by Lemma 18.3 of [P11], Ui,n and Vi,n are relatively compact open Baire sets in T .
Then, the functions (s′n) in the proof of Lemma 18.20(i) of [P11] are complex linear combinations
of the characteristic functions of relatively compact open Baire sets in T . As s′n → ϕ uniformly
in T , the claim holds.
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Claim 4. Let ϕ ∈ C0(T ). Then

∑

i∈I

|
∫

T

fϕdμi|
p <∞. (22.3.10)

In fact, given ε > 0, choose s as in Claim 3. By hypothesis (22.3.1),
∑

i∈I |
∫
U sfdμi|

p < ∞.
Then there exists a finite set J0 ⊂ I such that

∑

I\J0

|
∫

T

sfdμi|
p < (

ε

2
)p. (22.3.11)

Let I1 = I\J0. Let H
(p)
I1
= {(αi)i∈I1 : there exists a finite set J ⊂ I1 such that

αi = 0 for i ∈ I1\J and ||(αi)i∈I1 ||q ≤ 1} where
1
p +

1
q = 1 when 1 < p < ∞; and q = ∞ when

p = 1. Let x∗ = (αi)i∈I1 ∈ H
(p)
I1
be fixed. Then there exists a finite set Jx∗ ⊂ I1 such that αi = 0

for i ∈ I1\Jx∗ . Let
Φx∗(ϕ) =

∑

i∈Jx∗

αiθi(ϕ).

Then by (22.3.4) we have

Φx∗(ϕ) =
∑

i∈Jx∗

αiμθi(ϕ) =
∑

i∈Jx∗

∫

T

αifϕdμi (22.3.12)

for ϕ ∈ C0(T ). Then Φx∗ is a bounded linear functional on C0(T ) and

|Φx∗(ϕ)| ≤ |
∫

T

(ϕ− s)dμΦx∗ |+ |
∫

T

sdμΦx∗ | ≤ ||ϕ− s||T v(μΦx∗ ,B(T ))(T ) + |
∑

i∈Jx∗

αi

∫

T

sfdμi|

since μΦx∗ =
∑

i∈Jx∗
αiμθi =

∑
i∈Jx∗

αiηi on Bc(T ) by (22.3.6) and since s is a Bc(T )-simple
function. Taking y∗ = (αi)i∈I with αi = 0 for i ∈ I\Jx∗ , we observe that Φx∗ is the same as
Ψy∗ defined before Claim 2 and hence by Claim 2 we have sup

x∗∈H(p)I1
v(μΦx∗ ,B(T ))(T ) ≤M for

1 ≤ p <∞ where M is as in Claim 2. Hence by (22.3.9) and (22.3.11) we have

|Φx∗(ϕ)| ≤ ||ϕ− s||T ∙ v(μΦx∗ ,B(T ))(T ) + |(
∑

i∈Jx∗

αi

∫

T

sfdμi|

≤
ε

2M
∙M + |x∗(

∫

T

sfdμi)i∈I1 |

≤
ε

2
+ ||x∗||q||(

∫

T

sfdμi)i∈I1 ||p

< ε.

Varying x∗ ∈ H(p)I1 , we have supx∗∈H(p)1
|Φx∗(ϕ)| ≤ ε. As H(p)I1 is a norm determining set for

`p(I1) for 1 ≤ p <∞ and as Φx∗(ϕ) = x∗(
∫
T fϕdμi)i∈I1 by (22.3.12), we have

(
∑

i∈I1

|
∫

T

fϕdμi|
p)
1
p = ||(

∫

T

fϕdμi)i∈I1 ||p = sup
x∗∈H(p)I1

|Φx∗(ϕ)| ≤ ε
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for 1 ≤ p <∞. Hence the claim holds.

Then by Claim 4, the mapping ξ : C0(T )→ `p(I) given by

ξ(ϕ) = (

∫

T

fϕdμi)i∈I = (

∫

T

ϕdηi)i∈I

is well defined and linear. Moreover, by the closed graph theorem ξ is continuous. Since c0 6⊂ `p(I)
for 1 ≤ p <∞, ξ is weakly compact by Theorem 13 of [P5] for 1 ≤ p <∞. Then by Theorems 2
and 6 of [P5] its representing measure mξ : B(T )→ `p(I)

∗∗ has range in `p(I), and is σ-additive
and B(T )-regular.

Claim 5. Let x∗ = (αi)i∈I ∈ H
(p)
I , 1 ≤ p < ∞, so that there exists a finite set Jx∗ ⊂ I such

that αi = 0 for i ∈ I\Jx∗ . Then

(x∗ ◦mξ)|Bc(T ) =
∑

i∈Jx∗

αiηi =
∑

i∈I

αiηi.

In fact, for ϕ ∈ C0(T ), by Theorem 1 of [P5] we have
∫

T

ϕd(x∗ ◦mξ) = x
∗ξ(ϕ) =

∑

i∈Jx∗

αi

∫

T

ϕdηi =

∫

T

ϕd(
∑

i∈Jx∗

αiηi);

(x∗ ◦mξ)|Bc(T ) is Bc(T )-regular since (mξ)|Bc(T ) is Bc(T )-regular by Theorem 7(xxiii) of [P5] and∑
i∈Jx∗

αiηi is Bc(T )-regular as observed after (22.3.6). Consequently, by the uniqueness part of
the σ-Borel version of the Riesz representation theorem the claim holds.

By hypothesis, f is μi-measurable for i ∈ I and hence f is
∑

i∈Jx∗
αiμi-measurable for

x∗ = (αi)i∈I ∈ H
(p)
I for 1 ≤ p < ∞, where αi = 0 for i ∈ I\Jx∗ , Jx∗ ⊂ I and Jx∗ is finite.

Since ηi � v(μi), i ∈ I by Claim (*), f is also ηi-measurable for i ∈ I. Hence by Claim 5,

f is (x∗ ◦mξ)|Bc(T )-measurable for x
∗ ∈ H

(p)
I . Since mξ is `p(I)-valued σ-additive and Borel

regular for 1 ≤ p <∞, by Theorem 20.12, mξ|δ(C) is `p(I)-valued σ-additive and δ(C)-regular for

1 ≤ p <∞. As H(p)I is a norm determining set for `p(I), then by the last part of Lemma 22.2, f
is mξ|δ(C)-measurable as well as Lusin mξ|δ(C)-measurable.

Let ε > 0. As mξ is B(T )-regular, there exists K ∈ C such that ||mξ||(T\K) < ε
2 . As f

is Lusin mξ|δ(C)-measurable, there exists K0 ∈ C with K0 ⊂ K such that f |K0 is continuous
and ||mξ||(K\K0) < ε

2 . Then ||mξ||(T\K0) < ε and fχK0 is bounded and B(K0)-measurable,
as it is continuous on the compact K0. Consequently, fχK0 is a bounded Bc(T )-measurable
function with compact support. As u is prolongable with the reprsenting measure mu, by (20)
of Theorem 19.12 of [P11] and by Theorem 3.5(v) and Remark 4.3 of [P8], fχK0 ∈ L1(mu).
By Claim 1 and by the hypothesis that f ∈ L1(μi) for i ∈ I, f is (x∗ ◦ mu)-measurable

for each x∗ ∈ H
(p)
I , 1 ≤ p < ∞ and as observed in the beginning of the proof, mu is `p(I)-

valued, σ-additive and δ(C)-regular. As H(p)I is a norm determining set for `p(I), 1 ≤ p < ∞,
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by Lemma 22.2, f is mu-measurable. Consequently, f − fχK0 is also mu-measurable. Now
by Claims 1 and 5, by Lemma 22.1(i) and by the fact that

∫
N(f)\K0

|f |dv(
∑

i∈Jx∗ αiμi) =

v(
∫
N(f)\K0)

fd(
∑

i∈Jx∗
αiμi)) = v(

∑
i∈Jx∗

αiηi)(N(f)\K0) (by Proposition 2.11 of [P8]), we have

sup
x∗∈H(p)I

∫

T

|f − fχK0 |dv(x
∗ ◦mu) = sup

x∗∈H(p)I

∫

N(f)\K0
|f |dv(x∗ ◦mu)

= sup
x∗=(αi)i∈H

(p)
I

∫

N(f)\K0
|f |dv(

∑

i∈Jx∗

αiμi)

= sup
x∗=(αi)i∈I∈H

(p)
I

v(
∑

i∈Jx∗

αiηi)(N(f)\K0)

= sup
x∗∈H(p)I

v(x∗ ◦mξ)(N(f)\K0)

≤ sup
x∗∈H(p)I

v(x∗ ◦mξ)(T\K0)

≤ ||mξ||(T\K0) < ε

for 1 ≤ p < ∞. Since f is mu-measurable, fχK0 ∈ L1(mu), H
(p)
I is a norm determining set for

`p(I) for 1 ≤ p < ∞ and ε > 0 is arbitrary, by Lemma 22.1(ii) we conclude that f ∈ L1(mu).
Hence the condition (22.3.1) is sufficient.

Let f ∈ L1(mu). Let x∗i = (αj)j∈I ∈ H
(p)
I , where αi = 1 and αj = 0, j 6= i. Then by

Claim 1, x∗i ◦mu = μi and hence by Theorem 19.11(iii) of [P11], f ∈ L1(μi) and x∗i (
∫
T fdmu) =∫

T fd(x
∗
i ◦mu) =

∫
T fdμi. Hence

∫

T

fdmu = (

∫

T

fdμi)i∈I ∈ `p(I) (22.3.13)

for 1 ≤ p <∞.

Conversely, let f ∈ L1(mu) and let U be an open Baire set in T . Then by Theorem 3.5(vi) and
by Remark 4.3 of [P8], fχU ∈ L1(mu) and hence by (22.3.13),

∫
T fχUdmu = (

∫
U fdμi)i∈I ∈ `p(I).

Therefore
∑

i∈I |
∫
U fdμi|

p <∞ for 1 ≤ p <∞. Thus the condition (22.3.1) is also necessary.

Let p = 1, f ∈ L1(mu) and x∗ = (αi)i∈I ∈ `∞(I), where αi = 1 for each i. Then θ given in
the last part of the theorem is the same as x∗u and hence θ ∈ K(T )∗. Then by Theorem 19.11
of [P11], μθ = mx∗u considering x∗u as a scalar valued prolongable operator. Moreover, by the
same theorem, we have f ∈ L1(x∗mu) = L1(mx∗u) = L1(μθ) and

∫

A

fdμθ =

∫

A

fdmx∗u = x
∗(

∫

A

fdmu) = x
∗((

∫

A

fdμi)i∈I) =
∑

i∈I

∫

A

fdμi

for each A ∈ Bc(T ).
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This completes the proof of the theorem.

The above theorem for the case I = NI and p = 1 is used in the proof of the following result,
the last part of which strengthens Theorem 4.2 of [P8] when P = δ(C) and m is a Banach space
valued σ-additive P-regular measure on P.

Theorem 22.4. Let X be a Banach space and let m : δ(C) → X be σ-additive and δ(C)-
regular. Let H be a norm determining set for X with the Orlicz property. Then a function
f : T → KI is m-integrable in T if and only if f ∈ L1(x∗ ◦m) for each x∗ ∈ H and, for each open
Baire set U in T , there exists a vector xU ∈ X such that

x∗(xU ) =

∫

U

fd(x∗ ◦m) (22.4.1)

for x∗ ∈ H. In that case, fϕ ∈ L1(m) for each ϕ ∈ C0(T ) and the mapping Ψ : C0(T ) → X

given by Ψ(ϕ) =
∫
T fϕdm is a weakly compact operator. Consequently, f is m-integrable in T

if and only if f ∈ L1(x∗ ◦m) for x∗ ∈ X∗ and (22.4.1) holds for each x∗ ∈ X∗ and for each open
Baire set U in T .

Proof. If f ∈ L1(m), then f is (KL) m-integrable in T by Theorem 4.2 of [P8] and hence the
conditions hold.

Conversely, let the conditions hold. Let < H > be the vector space spanned by H and let F
be the norm closure of < H > in X∗. By hypothesis, for each open Baire set U in T there exists
xU ∈ X such that (22.4.1) holds for x∗ ∈ H and consequently,

x∗(xU ) =

∫

U

fd(x∗ ◦m) (22.4.2)

for x∗ ∈< H >.

Claim 1. (22.4.2) holds for each x∗ ∈ F and for each open Baire set U in T .

In fact, given x∗ ∈ F , there exists a sequence (x∗n)
∞
1 ⊂< H > such that x∗ =

∑∞
1 x

∗
n with∑∞

1 |x
∗
n| <∞. Then, for ϕ ∈ K(T ), we have

∞∑

1

|
∫

T

ϕd(x∗n ◦m)| =
∞∑

1

|x∗n(
∫

T

ϕdm)| ≤ |
∫

T

ϕdm|(
∞∑

1

|x∗n|) <∞ (22.4.3)

since ϕ ∈ L1(m) by Theorem 3.5(v) and Remark 4.3 of [P8] and since Theorem 3.5(viii) of [P8]
applies by the same remark. Moreover, by (22.4.2) we have

∞∑

1

|
∫

U

fd(x∗n ◦m)| =
∞∑

1

|x∗n(xU )| ≤ (
∞∑

1

|x∗n|)|xU | <∞. (22.4.4)
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Clearly, x∗ ◦m =
∑∞
1 x

∗
n ◦m as m has range in X. As m is σ-additive and δ(C)-regular on

δ(C), x∗ ◦m is σ-additive and δ(C)-regular on δ(C).

The mapping u : K(T )→ `1(NI) given by

u(ϕ) = (

∫

T

ϕd(x∗n ◦m))
∞
n=1

is well defined by (22.4.3) and is clearly linear. By hypothesis f ∈ L1(x∗n ◦m) for n ∈ NI and by
(22.4.4), the complex measures (x∗n ◦m)

∞
n=1 satisfy the hypotheses of Theorem 22.3 for p = 1 and

I = NI and consequently, u is a prolongable Radon operator and f ∈ L1(mu). By the last part of
the said theorem, θ : K(T ) → KI, given by θ(ϕ) =

∑∞
n=1

∫
T ϕd(x

∗
n ◦m), belongs to K(T )

∗, f is
μθ-integrable and ∫

U

fdμθ =
∞∑

n=1

∫

U

fd(x∗n ◦m) (22.4.5)

for each open Baire set U in T and for the set U = N(f) since f ∈ L1(mu) so that N(f) ∈ B̃c(T )
with respect to ||m||u.

Now
∫
T ϕdμθ = θ(ϕ) =

∑∞
n=1

∫
T ϕd(x

∗
n ◦m) =

∫
T ϕd(x

∗ ◦m) for φ ∈ K(T ), since |
∫
T ϕd(x

∗ ◦

m) −
∫
T ϕd(

∑k
1 x
∗
n ◦m)| = |x

∗ −
∑k
1 x
∗
n||
∫
T ϕdm| → 0 as k → ∞. Since x

∗ ◦m is σ-additive
and δ(C)-regular, and since μθ|δ(C) is σ-additive and δ(C)-regular by Theorem 4.4(i) of [P2], by
an argument based on the uniqueness part of the Riesz representation theorem which is similar
to that in the proof of Claim 1 in the proof of Theorem 22.3 we have (x∗ ◦m) = μθ|δ(C). Then
by (22.4.2) and (22.4.5) we have

∫

U

fd(x∗ ◦m) =
∫

U

fdμθ =
∞∑

n=1

∫

U

fd(x∗n ◦m) =
∞∑

n=1

x∗n(xU ) = x
∗(xU )

for any open Baire set U in T and hence Claim 1 holds. Moreover, as f is μθ-integrable and as
μθ|δ(C) = x

∗ ◦m, f is (x∗ ◦m)-integrable and hence
∫
T |f |dv(x

∗ ◦m) <∞. Since x∗ is arbitrary
in F , it follows that f ∈ L1(x∗ ◦m) and hence

∫

T

|f |dv(x∗ ◦m) <∞ (22.4.6)

for x∗ ∈ F .

Let F be the vector space spanned by the characteristic functions of open Baire sets in T .
Then for each g ∈ F , by Claim 1 there exists xg ∈ X such that

x∗(xg) =

∫

T

fgd(x∗ ◦m) (22.4.7)

for each x∗ ∈ F . Let G = {xg : g ∈ F , ||g||T ≤ 1}.
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Claim 2. supxg∈G |xg| =M (say) <∞.

In fact, for x∗ ∈ F , by (22.4.6) and (22.4.7) we have

sup
xg∈G

|x∗(xg)| = sup
xg∈G

|
∫

T

fgd(x∗ ◦m)| ≤
∫

T

|f |dv(x∗ ◦m) <∞.

Hence G is σ(X,F )-bounded. Since H is a norm determining set for X, by Lemma 18.13 of
[P11] we have |x∗| ≤ 1 for x∗ ∈ H and hence |x| = sup|x∗|≤1 |x

∗(x)| ≥ supx∗∈F,|x∗|≤1 |x
∗(x)| ≥

supx∗∈H |x
∗(x)| = |x| for x ∈ X (since H ⊂ F ). Hence X can be considered as a subspace of F ∗

with the restriction of the norm of F ∗. Then by the Banach-Steinhaus theorem applied to the
Banach space F , the set G is norm bounded and hence the claim holds.

For g ∈ F , let Φ(g) = xg. By (22.4.7) and by the hypothesis that H is norm determining,
Φ : F → X is well defined and linear. By Claim 2, Φ is continuous. Hence Φ has a unique
X-valued continuous linear extension Φ̂ on the closure F̄ of F in the Banach space of all bounded
scalar functions on T , with the supremum norm. As C0(T ) ⊂ F̄ by Claim 3 in the proof of
Theorem 22.3, define Φ0 = Φ̂|C0(T ). Then Φ0 : Co(T ) → X is linear and continuous and hence
by Theorem 1 of [P5] its representing measure η is given by Φ∗∗0 |B(T ). Moreover, by the same
theorem, x∗ ◦ η ∈M(T ) for each x∗ ∈ X∗ and

x∗Φ0(ϕ) =

∫

T

ϕd(x∗ ◦ η) forϕ ∈ C0(T ). (22.4.8)

By hypothesis, f ∈ L1(x∗ ◦m) for x∗ ∈ H and hence νx∗(∙) =
∫
(∙) fd(x

∗ ◦m) is σ-additive
on Bc(T ) for x∗ ∈ H. Clearly, νx∗ � v(x∗ ◦m). Then f is νx∗-measurable since f is (x∗ ◦m)-
measurable and νx∗ is δ(C)-regular for x∗ ∈ H.

Let ϕ ∈ C0(T ). Then there exists (gn)∞1 ⊂ F such that gn → ϕ uniformly in T so that
Φ0(ϕ) = limnΦ(gn). Then by (22.4.7) and by the definition of Φ we have

x∗Φ0(ϕ) = lim
n
x∗Φ(gn) = lim

n
x∗(xgn) = lim

n

∫

T

fgnd(x
∗ ◦m) (22.4.9)

for x∗ ∈ F . On the other hand, as ϕ is Bc(T )-measurable and bounded, fϕ ∈ L1(x∗ ◦m) for
x∗ ∈ H and by (22.4.6)

|
∫

T

fϕd(x∗ ◦m)−
∫

T

fgnd(x
∗ ◦m)| ≤ ||ϕ− gn||T (

∫

T

|f |dv(x∗ ◦m)→ 0

as n→∞ for each x∗ ∈ H. Hence by (22.4.9) and (22.4.8) we have
∫

T

ϕdνx∗ =

∫

T

fϕd(x∗ ◦m) = lim
n

∫

T

fgnd(x
∗ ◦m)

= x∗Φ0(ϕ) =

∫

T

ϕd(x∗ ◦ η) (22.4.10)
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for ϕ ∈ C0(T ) and x∗ ∈ H. As x∗ ◦ η ∈ M(T ) and as νx∗ is σ-additive and δ(C)-regular for
x∗ ∈ H, by an argument similar to that in the proof of Claim 1 in the proof of Theorem 22.3 and
by (22.4.10), we have

(x∗ ◦ η)|δ(C) = νx∗ (22.4.11)

for x∗ ∈ H. As v(x∗ ◦ η,B(T ))(T ) <∞, it follows that

v(νx∗ ,Bc(T ))(∙) = v(x
∗ ◦ η,B(T ))|Bc(T )(∙) (22.4.12)

for x∗ ∈ H. Consequently, as f is νx∗-measurable, it is (x∗ ◦ η)|Bc(T )-measurable for x
∗ ∈ H and

consequently, f is (x∗ ◦ η)-measurable.

Let U be an open Baire set in T . Then by §14 of [Din] there exists an increasing sequence (ϕn)
of functions in Cc(T ) such that ϕn ↗ χU . Then by LDCT, by (22.4.1), (22.4.10) and (22.4.12)
we have

(x∗ ◦ η)(U) =
∫

T

χUd(x
∗ ◦ η) = lim

n

∫

T

ϕnd(x
∗ ◦ η)

= lim
n

∫

T

ϕndνx∗ = lim
n

∫

T

ϕnfd(x
∗ ◦m)

=

∫

T

χUfd(x
∗ ◦m) = x∗(xU ) (22.4.13)

for x∗ ∈ H. Then by Theorem 18.14 of [P11], Φ0 is weakly compact and hence by Theorem 2
of [P5], η is σ-additive and has range in X and by Theorem 6(xix) of [P5], η is B(T )-regular.
(Note that only here we use the hypothesis that H has the Orlicz proprty to assert that Φ0 is
weakly compact.) Then, as f is (x∗ ◦ η)-measurable for x∗ ∈ H, by the last part of Lemma 22.2
f is η-measurable as well as Lusin η-measurable. Given ε > 0, by the B(T )-regularity of η there
exists K ∈ C such that ||η||(T\K) < ε

2 . As f is Lusin η-measurable, there exists K0 ∈ C such
that K0 ⊂ K, f |K0 is continuous, and ||η||(K\K0) <

ε
2 . Then

||η||(T\K0) < ε. (22.4.14)

Moreover, fχK0 is bounded and Bc(T )-measurable with compact support so that fχK0 ∈ L1(m)
by Theorem 3.5 and Remark 4.3 of [P8]. As f is (x∗ ◦m)-measurable for x∗ ∈ H, f − fχK0
is also (x∗ ◦m)-measurable for x∗ ∈ H. Moreover, as H is a norm determining set, by the last
part of Lemma 22.2 f − fχK0 is m-measurable. Then by (22.4.12), (22.4.14), by the fact that
v(νx∗)(∙) =

∫
(∙) |f |dv(x

∗ ◦m) and by Lemma 22.1(i) we have

sup
x∗∈H

∫

T

|f − fχK0 |dv(x
∗ ◦m) = sup

x∗∈H

∫

N(f)\K0
|f |dv(x∗ ◦m)

= sup
x∗∈H

v(νx∗)(N(f)\K0)

= sup
x∗∈H

v(x∗ ◦ η)(N(f)\K0)

= ||η||(N(f)\K0) ≤ ||η||(T\K0) < ε.
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Consequently, as fχK0 ∈ L1(m), by Lemma 22.1(ii), f ∈ L1(m). Hence the conditions are also
sufficient.

If f ∈ L1(m), then by Theorem 3.5(vii) and Remark 4.3 of [P8], fϕ ∈ L1(m) for each
ϕ ∈ C0(T ) and hence Ψ : C0(T ) → X given by Ψ(ϕ) =

∫
T ϕfdm is well defined for ϕ ∈ C0(T ).

Consequently, by (22.4.10) and by (viii) of the said theorem in [P8] we have

x∗Ψ(ϕ) =

∫

T

fϕd(x∗ ◦m) = x∗Φ0(ϕ)

for x∗ ∈ H and for ϕ ∈ C0(T ). As H is norm determining, it follows that Ψ = Φ0 and hence Ψis
weakly compact.

If H = {x∗ ∈ X∗ : |x∗| ≤ 1}, then H is a norm determining set for X and has the Orlicz
property by the Orlicz-Pettis theorem. Hence the last part holds by the first part.

This completes the proof of the theorem.

The following result which is deduced from the last part of Theorem 22.4 improves Theorem
12.2(i) of [P10] for δ(C)-regular σ-additive vector measures on δ(C).

Theorem 22.5. Let X be a quasicomplete lcHs and let m : δ(C) → X be σ-additive and
δ(C)-regular. Let f : T → KI. Then f is m-integrable in T if and only if f ∈ L1(x∗ ◦m) for each
x∗ ∈ X∗ and, for each open Baire set U in T , there exists a vector xU ∈ X such that

x∗(xU ) =

∫

U

fd(x∗ ◦m) (22.5.1)

for x∗ ∈ X∗.

Proof. Clearly, the conditions are necessary. Conversely, let the conditions hold. For each
q ∈ Γ, Πq : X → Xq ⊂ X̃q is continuous. Hence (y∗ ◦ Πq) ∈ X∗ for y∗ ∈ X∗q and hence by
hypothesis f ∈ L1(y∗ ◦mq) for each y∗ ∈ X∗q and by (22.5.1) we have

(y∗ ◦Πq)(xU ) =
∫

U

fd(y∗ ◦Πqm) =
∫

U

fd(y∗ ◦mq)

for each open Baire set U in T . Then by the last part of Theorem 22.4, f ∈ L1(mq) for each
q ∈ Γ. Particularly, f id mq-measurable for each q ∈ Γ and hence f is m-measurable. Moreover,
by Definition 12.1 of [P10], f ∈ L1(m) and

∫

A

fdm = lim
←−

∫

A

fdmq, A ∈ Bc(T )

and ∫

T

fdm = lim
←−

∫

N(f)\Nq
fdmq
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(see Definition 12.1 of [P10]).

In order to generalize Theorem 22.4 to complete lcHs-valued σ-additive δ(C)-regular vector
measures on δ(C), we first generalize Lemmas 22.1 and 22.2 as follows.

Lemma 22.6. Let X be an lcHs with topology τ and let H be a subset of X∗ such that
τ is identical with the topology of uniform convergence in equicontinuous subsets of H. Let P
be a δ-ring of subsets of a set Ω( 6 ∅) and let m : P → X be additive. Let EH = {E ⊂ H :
E equicontinuous}. Then:

(i) ||m||qE (A) = supx∗∈E v(x
∗ ◦m)(A), A ∈ σ(P).

(ii) Suppose X is further quasicomplete, m is σ-additive and f : Ω → KI is m-measurable and
(x∗ ◦m)-integrable for each x∗ ∈ H. Then f ∈ L1(m) if, for each E ∈ EH and ε > 0, there

exists g(ε)E ∈ L1(mqE ) such that

sup
x∗∈E

∫

T

|f − g(ε)E |dv(x
∗ ◦m) < ε.

Proof. (i) is due to Proposition 10.12(iii) of [P10].

(ii) For x∗ ∈ E, let Ψx∗ be as in Proposition 10.12 of [P10]. Then by hypothesis and by the
latter proposition, we have

sup
x∗∈E

∫

T

|f − g(ε)E |dv(Ψx∗ ◦mqE ) = sup
x∗∈E

∫

T

|f − g(ε)E |dv(x
∗ ◦m) < ε. (22.6.1)

Then by (22.6.1) and by Lemma 22.1(ii) applied to mqE : P → XqE ⊂ X̃qE , f ∈ L1(mqE ) since
{Ψx∗ : x∗ ∈ E} is a norm determining set for X̃qE by Proposition 10.12 of [P10] and since f is
mqE -measuable by hypothesis. Since E is arbitrary in EH and since {qE : E ∈ EH} generates the
topology τ , by Definition 12.1 and Remark 10.5 of [P12] we conclude that f ∈ L1(m).

Lemma 22.7. Let X be an lcHs and let H satisfy the hypothesis of Lemma 22.6. Let EH
be as in the above lemma. Suppose m : δ(C) → X (resp. m : B(T ) :→ X) is σ-additive and let
V ∈ V . Then a set A ∈ B(V ) (resp. A ∈ B(T )) is m-null if and only if A is (x∗ ◦m)-null for each
x∗ ∈ H. Ifm is further δ(C)-regular (resp. B(T )-regular) and if f : T → KI is (x∗ ◦m)-measurable
for x∗ ∈ H, then f is Lusin m-measurable as well as m-measurable.

Proof. Let A be (x∗ ◦m)-null for each x∗ ∈ H and let E ∈ EH . For x∗ ∈ E, let Ψx∗ be as
in Proposition 10.12 of [P10]. Then by the said proposition HE = {Ψx∗ : x∗ ∈ E} is a norm
determining set for XqE and hence for X̃qE and therefore, by hypothesis and by Lemma 22.2, A
is mqE -null. As E is arbitrary in EH and as {qE : E ∈ EH} generates the topology τ , A is m-
null by Remark 10.5 of [P10]. Conversely, if A ism-null, clearly A is (x∗◦m)-null for each x∗ ∈ H.
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Let f be (x∗ ◦m)-measurable for x∗ ∈ H. Let E ∈ EH . Then, f is (Ψx∗ ◦m)-measurable
for Ψx∗ ∈ HE . Hence, by Lemma 22.2 applied to mqE : P → XqE ⊂ X̃qE , f is mqE -measurable,
where P = δ(C) (resp. B(T ). Then by Definition 10.6 and by Remark 10.5 of [P10], f is m-
measurable and consequently, f is also Lusin m-measurable by Theorem 21.6 (resp. by Theorem
21.5).

Now we shall generalize Theorem 22.4 to complete lcHs-valued σ-additive δ(C)-regular mea-
sures.

Theorem 22.8 (Generalization of Theorem 22.4 to complete lcHs-valued mea-
sures). Let X be a complete lcHs with topology τ and let H be a subset of X∗ with the Orlicz
property such that τ is identical with the toplogy of uniform convergence in equicontinuous sub-
sets of H. Let m : δ(C)→ X be σ-additive and δ(C)-regular and let f : T → KI. Then f ∈ L1(m)
if and only if f ∈ L1(x∗ ◦m) for each x∗ ∈ H and, for each open Baire set U in T , there exists
xU ∈ X such that

x∗(xU ) =

∫

U

fd(x∗ ◦m) (22.8.1)

for x∗ ∈ H.

Proof. Let EH = {E ⊂ H : E equicontinuous}. By hypothesis, the seminorms qE , E ∈ EH ,
generate the topology τ . Let E ∈ EH be fixed. By Proposition 10.12 of [P10], (Ψx∗ ◦ ΠqE )(x) =
x∗(x) for x ∈ X and for x∗ ∈ E and hence we identify x∗ ∈ E with Ψx∗ . Let HE = U0qE ∩H for
E ∈ EH . Since E ⊂ HE ⊂ UoqE and since {Ψx∗ : x

∗ ∈ E} is a norm determining set for XqE by
the Proposition 10.12 of [P10], it follows that HE is a norm determining set for XqE and hence
for X̃qE . Let F be the vector space spanned by the characteristic functions of open Baire sets in
T . Then by (22.8.1), for each g ∈ F , there exists xg ∈ X such that

x∗(xg) =

∫

T

fgd(x∗ ◦m) (22.8.2)

for x∗ ∈ H and xg is unique as τ is generated by {qE : E ∈ EH}. Then the mapping Φ : F → X

given by Φ(g) = xg for g ∈ F is well defined and linear. For E ∈ HE , arguing as in the proof of
Theorem 22.4 with X̃qE ,mqE and HE in place of X, H and m, respectively, and using (22.8.1)
in place of (22.4.1) we can show that ΠqE ◦ Φ : F → X̃qE is continuous for E ∈ EH . Therefore,

there exists a unique continuous linear extension Φ̂(E) of ΠqE ◦Φ to the whole of F̄ with values in
X̃qE where F̄ is the closure of F in the Banach space of all bounded scalar functions on T with
supremum norm. Then there exists a constant ME such that

|Φ̂(E)(ϕ)|qE ≤ME ||ϕ||T (22.8.3)

for ϕ ∈ F̄ . Hence by Claim 3 in the proof of Theorem 22.3,
̂
Φ
(E)
0 = Φ̂(E)|C0(T ) is continuous

and linear and has range in X̃qE . Then (22.8.3) also holds for
̂
Φ
(E)
0 with ϕ ∈ C0(T ). Moreover,

(22.8.3) holds for all E ∈ EH .



V. Applications to integration in locally compact Hausdorff spaces-Part II 29

By hypothesis, X is a complete lcHs and {qE : E ∈ EH} generates the topology τ and
hence by Theorem 5.4, §5, Ch. II of [Scha], X = lim

←−
X̃qE . Let us define Φ̂ : F̄ → X by

Φ̂(ϕ) = lim
←−
Φ̂(E)(ϕ) for ϕ ∈ F . Let Φ0 : C0(T )→ X be given by Φ0 = Φ̂|C0(T ). Then by (22.8.3)

we have |Φ̂(ϕ)|qE = |(ΠqE ◦ Φ)(ϕ)|qE = |Φ̂
(E)(ϕ)|qE ≤ ME ||ϕ||T for each E ∈ EH and for each

ϕ ∈ F̄ . Hence Φ̂ and Φ0 are X-valued continuous linear mappings.

Let η be the representing measure of Φ0 in the sense of Definition 4 of [P5]. Then by Theorem
1 of [P5]

x∗Φ0(ϕ) =

∫

T

ϕd(x∗ ◦ η) (28.8.4)

for x∗ ∈ X∗ and for ϕ ∈ C0(T ).

Claim 1.
∫
T fϕd(x

∗ ◦m) = x∗Φ0(ϕ) =
∫
T ϕd(x

∗ ◦ η) for x∗ ∈ H and for ϕ ∈ C0(T ).

In fact, let ϕ ∈ C0(T ). As f ∈ L1(x∗ ◦m) for x∗ ∈ H and as ϕ is bounded and Bc(T )-
measurable, fϕ ∈ L1(x∗ ◦m) for x∗ ∈ H. By Claim 3 in the proof of Theorem 22.3, there exists
(gn)

∞
1 ⊂ F such that ||ϕ− gn||T → 0. Then, for x

∗ ∈ H,

|
∫

T

fϕd(x∗ ◦m)−
∫

T

fgnd(x
∗ ◦m)| ≤ ||ϕ− gn||T

∫

T

|f |dv(x∗ ◦m)→ 0 (22.8.5)

as n → ∞. Observing that Φ̂(g) = Φ(g) = xg for g ∈ F , by (22.8.2), (22.8.4) and (22.8.5) and
by the fact that ||ϕ− gn||T → 0 as n→∞ we have
∫

T

fϕd(x∗ ◦m) = lim
n

∫

T

fgnd(x
∗ ◦m) = lim

n
x∗(xgn) = lim

n
x∗Φ(gn) = x

∗Φ0(ϕ) =

∫

T

ϕd(x∗ ◦ η)

for x∗ ∈ H since Φ0 is continuous on C0(T ). Hence the claim holds.

Let U be an open Baire set in T and choose (ϕn)∞1 ⊂ C0(T ) such that ϕn ↗ χU (see the
proof (22.4.13)). Then by Claim 1, by LDCT and by (22.8.1) we have

(x∗ ◦ η)(U) = lim
n

∫

T

ϕnd(x
∗ ◦ η)

= lim
n
x∗Φ0(ϕn) = lim

n

∫

T

fϕnd(x
∗ ◦m)

=

∫

T

χUfd(x
∗ ◦m) = x∗(xU ) (22.8.6)

for x∗ ∈ H. Since H has the Orlicz property, by (22.8.6) and by Theorem 19.7(ii) of [P11], Φ0 is
weakly compact.

Then by Theorems 2 and 6 of [P5], η is X-valued, σ-additive and B(T )-regular. Let νx∗(∙) =∫
(∙) fd(x

∗ ◦m) for x∗ ∈ H. Then for ϕ ∈ C0(T ) and for x∗ ∈ H, by Claim 1 we have
∫

T

ϕdνx∗ =

∫

T

fϕd(x∗ ◦m) = x∗Φ0(ϕ) =
∫

T

ϕd(x∗ ◦ η)
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and hence an argument similar to to that in the paragraph following (22.4.10) in the proof of
Theorem 22.4 shows that f is (x∗ ◦ η)-measurable for x∗ ∈ H. Then by the last part of Lemma
22.7, f is η-measurable as well as Lusin η-measurable. Thus, given E ∈ EH and ε > 0, arguing
as in the proof of Theorem 22.4, there exists a compact K0 in T such that ||η||qE (T\K0) < ε

and f |K0 is continuous. Then fχK0 is bounded and Bc(T )-measurable with compact support.
Consequently, by Theorem 11.9(i)(b) and by Notation 15.9 of [P10], fχK0 ∈ L1(m) and hence
fχK0 ∈ L1(mqE ). Moreover, by hypothesis f is (x

∗ ◦m)-measurable for each x∗ ∈ H and as H
satisfies the hypothesis of Lemma 22.7, it follows that f is m-measurable. Then an argument
similar to that in the last part of the proof of Theorem 22.4, invoking Lemma 22.6(ii) in place
of Lemma 22.1(ii), shows that f ∈ L1(mqE ). Since E is arbitrary in EH and since (qE)E∈EH
generates the topology τ , by Definition 12.1 and by Remark 10.5 of [P10], f ∈ L1(m).

This completes the proof of the theorem.

Now we give an analogue of Theorem 22.3 when μi : B(T ) → KI, i ∈ I, are σ-additive and
Borel regular.

Theorem 22.9. Let μi : B(T ) → KI be σ-additive and B(T )-regular for i ∈ I. Suppose∑
i∈I |

∫
T ϕdμi|

p < ∞ for each ϕ ∈ C0(T ) and for 1 ≤ p < ∞. Let u : C0(T ) → `p(I) be
defined by u(ϕ) = (

∫
T ϕdμi)i∈I . Then u is a weakly compact operator on C0(T ). Let mu be the

representing measure of u in the sense of Definition 4 of [P5] and let f : T → KI belong to L1(μi)
for i ∈ I. Then f is mu-integrable in T if and only if

∑

i∈I

|
∫

U

fdμi|
p <∞ (22.9.1)

for each open Baire set U in T . In that case,
∫
T fdmu = (

∫
T fdμi)i∈I .

Let p = 1 and let f ∈ L1(mu). If θ(ϕ) =
∑

i∈I

∫
T ϕdμi for ϕ ∈ C0(T ), then θ ∈ K(T )

∗
b (see

pp. 65 and 69 of [P2]), f is μθ-integrable and
∫

A

fdμθ =
∑

i∈I

∫

A

fdμi

for A ∈ B(T ), where μθ is the bounded complex Radon measure induced by θ in the sense of
Definition 4.3 of [P1].

Proof. By an argument similar to that in the proof of Theorem 22.3 we can show that the
linear mapping u has closed graph and hence by Theorem 2.15 of [Ru2], u is continuous. Since
c0 6⊂ `p(I) for 1 ≤ p <∞, by Theorem 13 of [P5] or by Corollary 2 of [P6], u is weakly compact.
Then by Theorems 2 and 6 of [P5], the representing measure mu of u is `p(I)-valued, σ-additive
and Borel regular on B(T ).

Let H(p)I be as in the proof of Theorem 2.3 for 1 ≤ p < ∞. If x∗ = (αi) ∈ H
(p)
I , then there

exists Jx∗ ⊂ I, Jx∗ finite, such that αi = 0 for i ∈ I\Jx∗ . Then by Theorem 1 of [P5] we have
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x∗u(ϕ) =
∫
T ϕd(x

∗ ◦mu) =
∫
T ϕd(

∑
i∈Jx∗

αiμi) for ϕ ∈ C0(T ). Since x∗ ◦mu and μi, i ∈ I,
are σ-additive and Borel regular, by the uniqueness part of the Riesz representation theorem we
conclude that

x∗ ◦mu =
∑

i∈Jx∗

αiμi =
∑

i∈I

αiμi. (22.9.2)

For i ∈ I, let θi and ηi be defined as in the proof of Theorem 22.3. Note that ηi is σ-additive
on B(T ) and ηi � v(μi), i ∈ I so that ηi is B(T )-regular for i ∈ I. Since

∫

T

ϕdηi =

∫

T

ϕfdμi = θi(ϕ) =

∫

T

ϕdμθi

for ϕ ∈ C0(T ) and for i ∈ I, by the uniqueness part of the Riesz representation theorem

ηi = μθi for i ∈ I. (22.9.3)

Defining Ψx∗ as in the proof of Theorem 22.3, by (22.9.3) we have

μΨx∗ =
∑

i∈Jx∗

αiμθi =
∑

i∈Jx∗

αiηi on B(T ). (22.9.4)

Using (22.9.1), (22.9.4) and Hölder’s inequality and arguing as in the proof of Claim 2 in the
proof of Theorem 22.3 one can show that

sup
x∗∈H(p)I

|μΨx∗ (U)| ≤ (
∑

i∈I

|
∫

U

fdμi|
p)
1
p <∞ (22.9.5)

for 1 ≤ p <∞ and for an open Baire set U in T . As {μΨx∗ : x
∗ ∈ H(p)I } ⊂M(T ) for 1 ≤ p <∞,

by (22.9.5) and by Corollary 18.5 of [P11] we have

sup
x∗∈H(p)I

v(μΨx∗ ,B(T ))(T ) =Mp (say) <∞ (22.9.6)

for 1 ≤ p <∞.

By an argument quite similar to the proof of Claim 4 in the proof of Theorem 22.3 and by
the use of (22.9.6) in place of Claim 2 in the proof of the said theorem, we have

∑

i∈I

|
∫

T

fϕdμi|
p <∞ (22.9.7)

for ϕ ∈ C0(T ) and for 1 ≤ p <∞.

Then the mapping ξ : C0(T )→ `p(I) given by

ξ(ϕ) = (

∫

T

fϕdμi)i∈I = (

∫

T

ϕdηi)i∈I
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is well defined and lnear and has closed graph. Then by the closed graph theorem, ξ is contin-
uous. Since c0 6⊂ `p(I) for 1 ≤ p < ∞, by Theorem 13 of [P5], ξ is weakly compact. . Then by
Theorems 2 and 6 of [P5], the representing measure mξ of ξ is `p(I)-valued, σ-additive and Borel
regular on B(T ).

Then arguing as in the proof of Claim 5 in the proof of Theorem 22.3 and using the uniqueness
part of the Riesz representation theorem (Borel version), we conclude that

(x∗ ◦mξ) =
∑

i∈Jx∗

αiηi =
∑

i∈I

αiηi (22.9.8)

for each x∗ ∈ H(p)I , 1 ≤ p < ∞. Invoking the Borel case of Lemma 22.2 and using (22.9.8) we
conclude that f is m-measurable as well as Lusin m-measurable. The rest of the argument in
the proof of Theorem 22.3 holds here verbatim with B(T ) in place of Bc(T ) and B(T )-regular in
place of δ(C)-regular.

This completes the proof of the theorem.

Using the above theorem for I = NI and for p = 1, we obtain below the analogue of Theorem
22.4 for a Banach space-valued σ-additive Borel regular measure.

Theorem 22.10. Let X be a Banach space and let m : B(T )→ X be σ-additive and Borel
regular. Let H be a norm determining set for X with the Orlicz property and let f : T → KI.
Then the conclusions of Theorem 22.4 hold. (By Theorem 20.12, m|δ(C) satisfies the hypothesis
of Theorem 22.4 and hence the conclusions of Theorem 22.4 hold for m|δ(C) but it requires a proof
to show that they hold for m itself.)

Proof. By Theorem 4.2 of [P8], the conditions are necessary. Conversely, let < H > and
F be as in the proof of Theorem 22.4. If x∗ ∈ F and x∗ =

∑∞
1 x

∗
n with (x

∗
n) ⊂ H and with∑∞

1 |x
∗
n| < ∞, then arguing as in the proof of the said theorem, we have x

∗ ◦m =
∑∞
1 x

∗
n ◦m

and moreover, x∗ ◦m is σ-additive and B(T )-regular. Further, (22.4.3) holds for ϕ ∈ C0(T ) and
(22.4.4) also holds. Consequently, the mapping u : C0(T )→ `1(NI) given by

u(ϕ) = (

∫

T

ϕd(x∗n ◦m))
∞
n=1

is well defined and linear. Then the complex measures (x∗n ◦m)
∞
n=1 satisfy the hypotheses of

Theorem 22.9 for p = 1 and for I = NI and hence u is a weakly compact operator on C0(T )
and f ∈ L1(mu), where mu is the representing measure of u. Then by the last part of the
said theorem, θ : C0(T ) → KI, given by θ(ϕ) =

∑∞
n=1

∫
T ϕd(x

∗
n ◦ m), belongs to K(T )

∗
b , f is

μθ-integrable and ∫

U

fdμθ =
∞∑

n=1

∫

U

fd(x∗n ◦m)

for each open Baire set U in T and for the set U = N(f) since f ∈ L1(mu) so that N(f) ∈ B̃(T )
with respect to ||mu||. Observing that x∗◦m is σ-additive and B(T )-regular by hypothesis and μθ
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is σ-additive and B(T )-regular by Theorem 5.3 of [P2], and proving that
∫
T ϕdμθ =

∫
T ϕd(x

∗◦m)
for ϕ ∈ C0(T ) as in the proof of Claim 1 in the proof of Theorem 22.4, by the uniqueness part
of the Riesz representation theorem we conclude that μθ = x∗ ◦m. Moreover, by (22.4.2) and
(22.4.5) we have x∗(xU ) =

∫
U fd(x

∗ ◦m), where by hypothsis y∗(xU ) =
∫
T fd(y

∗ ◦m) for each
open Baire set U in T and for each y∗ ∈ H.

Arguing as in the proof of Theorem 22.4, one can define the continuous linear mapping
Φ0 : C0(T ) → X with the representing measure η. Let νx∗(∙) =

∫
(∙) fd(x

∗ ◦m) for x∗ ∈ H.
Then νx∗ � v(x∗ ◦ m). Then f is νx∗-measurable since f is (x∗ ◦ m)-measurable and νx∗ is
B(T )-regular for x∗ ∈ H. Arguing as in the proof of Theorem 22.4, by the uniqueness part of the
Riesz representation theorem we have νx∗ = x∗ ◦ η, x∗ ∈ H and hence f is (x∗ ◦ η)-measurable
for x∗ ∈ H. The remaining arguments in the proof of Theorem 22.4 hold here excepting that the
Borel case of Lemma 22.2 has to be invoked here.

This completes the proof of the theorem.

The following theorem which improves Theorem 12.2(i) of [P10] for B(T )-regular σ-additive
vector measures is immediate from the last part of Theorem 22.10 by an argument similar to that
in the proof of Theorem 22.5.

Theorem 22.11. Let X be a quasicomplete lcHs and let m : B(T ) → X be σ-additive and
B(T )-regular. Then a function f : T → KI is m-integrable in T if and only if f ∈ L1(x∗ ◦m) for
each x∗ ∈ X∗ and, for each open Baire set U in T , there exists a vector xU ∈ X such that

x∗(xU ) =

∫

U

fd(x∗ ◦m)

for x∗ ∈ X∗.

The following result is an analogue of Theorem 22.8 for the Borel-regular σ-additive X-valued
vector measure m where X is a complete lcHs.

Theorem 22.12. Let X, τ andH be as in Theorem 22.8 and letm : B(T )→ X be σ-additive
and Borel regular. Then a function f : T → KI belongs to L1(m) if and only if f ∈ L1(x∗ ◦m)
for each x∗ ∈ H and, for each open Baire set U in T , there exists a vector xU ∈ X such that

x∗(xU ) =

∫

U

fd(x∗ ◦m)

for x∗ ∈ H.

Proof. The proof of Theorem 22.8 holds here verbatim excepting that we have to invoke the
uniqueness part of the Riesz representation theoem (Borel version) to show that νx∗ = x∗ ◦ η for
x∗ ∈ H so that f is (x∗ ◦ η)-measurable for x∗ ∈ H and then invoke the Borel case of Lemma
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22.7. The details are left to the reader.

23. ADDITIONAL CONVERGENCE THEOREMS

First we obtain a generalization of the Bourbaki version of the Egoroff theorem for an lcHs-
valued σ-additive δ(C)-regular measure. Then Proposition 4.3 of [T] is suitably generalized in
Theorem 23.4. Corollary T2 on P. 176 of [T] is improved in Theorem 23.6. Then the latter
theorem is generalized to vector measures in Theorems 23.8 and 23.12.

Theorem 23.1 (Generalization of the Bourbaki version of the Egoroff theorem).
Let X be an lcHs, n : δ(C)→ X be σ-additive and δ(C)-regular and f0 : T → KI. For each q ∈ Γ,

let f (q)n : T → KI be nq-measurable for n ∈ NI and let f
(q)
n → f0 nq-a.e. in T . Then:

(i) f0 is n-measurable.

(ii) Given K ∈ C, q ∈ Γ and ε > 0, there exists K(q)0 ∈ C such that K
(q)
0 ⊂ K, ||n||q(K\K

(q)
0 ) <

ε, f (q)n |K(q)0
, n ∈ NI ∪ {0}, are continuous and f (q)n → f0 uniformly in K

(q)
0 .

Proof. (i) By hypothesis, f0 is nq-measurable for each q ∈ Γ and hence f0 is n-measurable.

(ii) Without loss of generality we shall assume X to be a normed space. Clearly, δ(C) ∩K =
B(K) is a σ-algebra and hence by Theorem 5.18(viii) of [P9], given ε > 0, there exists Aε ∈ B(K)
such that ||n||(Aε) < ε

3 and fn → f uniformly in K\Aε. As K\Aε ∈ B(K) ⊂ δ(C), by the
δ(C)-regularity of n there exists a compact set K1 ⊂ K\Aε such that ||n||(K\Aε\K1) < ε

3 .
Then particularly, fn → f0 uniformly in K1. Moreover, by hypothesis, by Theorem 21.6 and
by Definition 21.3, for each n there exists Cn ∈ C with Cn ⊂ K1 such that fn|Cn is con-
tinuous and ||n||(K1\Cn) < ε

3 ∙
1
2n . Then K0 =

⋂∞
1 Cn ∈ C, K0 ⊂ K1 ⊂ K and fn|K0 is

continuous for each n ∈ NI so that their uniform limit f0 is also continuous in K0. Moreover,
||n||(K1\K0) ≤

∑∞
n=1 ||n||(K1\Cn) <

ε
3 so that ||n||(K\K0) < ε.

The following definition is motivated by that on p.122 of [T].

Definition 23.2. Let X be an lcHs, n : δ(C) → X be σ-additive, f : T → KI and q ∈ Γ. A

sequence (f (q)n ) of nq-measurable scalar functions is said to converge to f in measure nq over com-

pacts, if, given K ∈ C and η > 0, the sequence ||n||q({t ∈ K : |f
(q)
n (t)−f(t)| ≥ η})→ 0 as n→∞.

Theorem 23.3. LetX be an lcHs, n : δ(C)→ X be σ-additive, q ∈ Γ and f0, g0, g, f
(q)
n , g

(q)
n :

T → KI, n ∈ NI, be nq-measurable for n ∈ NI. Let f : T → KI. If f (q)n → f0 and g
(q)
n → g0 in measure

nq over compacts, then the following hold:

(i) f (q)n + g
(q)
n → f0 + g0 in measure nq over compacts.
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(ii) λf (q)n → λf0 in measure nq over compacts.

(iii) If f (q)n → g in measure nq over compacts, then f0 = g nq-a.e. in T .

(iv) If f (q)n → f nq-a.e. in T and if n is δ(C)-regular, then f
(q)
n → f in measure nq over compacts.

Proof. (ii) is obvious. Let K ∈ C and η > 0. For any three nq-measurable scalar func-
tions ϕ, ψ, and h on T , it is easy to verify that ||n||q({t ∈ K : |ϕ(t) − ψ(t)| ≥ η}) ≤
||n||q({t ∈ K : |ϕ(t) − h(t)| ≥ η

2}) + ||n||q({t ∈ K : |h(t) − ψ(t)| ≥ η
2}). Using this in-

equality, one can prove (i) and that ||n||q(N(f0 − g) ∩ K) = 0 in (iii) for each K ∈ C, since

N(f0 − g) ∩K =
⋃∞
n=1{t ∈ K : |f0(t) − g(t)| ≥

1
n}. If A = N(f0 − g), then A ∈ B̃c(T )q so that

A is of the form A = B ∪N , B ∈ Bc(T ), N ⊂ M ∈ Bc(T ) and ||n||q(M) = 0. Then there exists
an increasing sequence (Bn)∞1 ⊂ δ(C) such that Bn ↗ B. Then Kn = B̄n ∈ C and B ⊂

⋃∞
1 Kn.

Hence ||n||q(B) ≤
∑∞
1 ||n||q(N(f0 − g) ∩Kn) = 0. Hence f0 = g nq-a.e. in T .

(iv) By hypothesis, f is nq-measurable. Let K ∈ C and η > 0. By hypothesis and by Theorem

23.1 there exists K(q)0 ∈ C with K(q)0 ⊂ K such that ||n||q(K\K
(q)
0 ) < η, f (q)n |K(q)0

, n ∈ NI and

f |
K
(q)
0

are continuous and f (q)n → f uniformly in K(q)0 . Hence, given ε > 0, there exists n0 such

that sup
t∈K(q)0

|f (q)n (t) − f(t)| < ε for n ≥ n0 so that ||n||q({t ∈ K : |f (q)n (t) − f(t)| ≥ ε}) ≤

||n||q(K\K
(q)
0 ) < η for n ≥ n0. Hence (iv) holds.

Theorem 23.4 (A variant of Theorem 15.12(ii) of [P10]). Let X be a quasicomplete
(resp. sequentially complete) lcHs, let 1 ≤ p < ∞ and let n : δ(C) → X be σ-additive. Let

(f
(q)
n )∞1 ⊂ Lp(nq) (resp. ⊂ Lp(σ(δ(C)),nq)) for each q ∈ Γ and let f : T → KI (resp. be

Bc(T )-measurable). Suppose f
(q)
n → f nq-a.e. in T for each q ∈ Γ. Then f ∈ Lp(n) (resp.

f ∈ Lp(σ(δ(C)),n)) and limn(nq)•p(f
(q)
n − f, T ) = 0 for each q ∈ Γ if and only if the following

conditions hold:

(i) (nq)•p(f
(q)
n , ∙), n ∈ NI, are uniformly nq-continuous on Bc(T ) for each q ∈ Γ. (See Definition

8.3 of [P10].)

(ii) For each ε > 0 and q ∈ Γ, there exists K(q) ∈ C such that

sup
n
(nq)

•
p(f
(q)
n , T\K(q)) < ε.

Proof. If P = δ(C), note that σ(P) = Bc(T ). Then (i) is the same as condition (a) of Theo-

rem 15.12(ii) of [P10]. (ii) is equivalent to condition (b) of Theorem 15.2(ii), since for A(q)ε ∈ P ,

A
(q)
ε = K(q) ∈ C and T\A

(q)
ε ⊃ T\K(q).

Remark 23.5. In the light of Lemma 20.5 and Theorem 20.12, Theorems 23.1 and 23.3(iv)
hold for n =m|δ(C) (resp. n = ω|δ(C)) where m : B(T )→ X (resp. ω : Bc(T )→ X) is σ-additive
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and Borel regular (resp. and σ-Borel regular).

The following theorem is an improved version of Corollary T2 on p. 176 of [T].

Theorem 23.6. Let θ ∈ K(T )∗ and λ = μ∗|θ||B(T ) (so that λ = v(μθ,B(T )) = μ|θ||B(T ) by
Theorems 4.7 and 4.11 of [P1]). Then λ : B(T ) → [0,∞] is σ-additive and Radon-regular in the
sense of Definition 3.3 of [P1]. Suppose (fn)∞1 ⊂ L1(λ) such that the sequence (

∫
U fndμθ)

∞
1 is

convergent for each open Baire set U in T . Then there exists f ∈ L1(λ) such that limn
∫
A fndμθ =∫

A fdμθ for each Borel set A in T . Consequently,

lim
n

∫

T

gfndμθ =

∫

T

gfdμθ (23.6.1)

for each λ-measurable bounded scalar function g on T and consequently, f is unique in L1(λ). If
fn → h λ-a.e. in T , then f = h λ-a.e. in T and limn

∫
A fndμθ =

∫
A hdμθ for each A ∈ B(T ), the

convergence being uniform with respect to A ∈ B(T ).

Proof. λ is σ-additive and Radon-regular by Theorem 2.2 of [P1]. For f ∈ L1(λ), let
μ(∙) =

∫
(∙) fdμθ. Since f ∈ L1(λ), by Lemma 1, no. 6, § 5, Ch. IV of [B], there exist a sequence

(Kn)
∞
1 ⊂ C and a λ-null set N such that N(f) ⊂ N ∪

⋃∞
1 Kn. Hence, for A ∈ B(T ), let us define

∫

A

fdμθ =

∫

⋃∞
1 (A∩Kn)

fdμθ (23.6.2)

which is well defined as f ∈ L1(μθ). Then we note that μ : B(T ) → KI given by μ(A) =
∫
A fdμθ

is well defined, σ-additive and Borel regular since μ � v(μθ) on Bc(T ) and hence on B(T ) by
(23.6.2). (See Claim (*) in the proof of Theorem 22.3.) Therefore, μ ∈ M(T ). Moreover,
by Notation 18.1 of [P11], by Proposition 2.11 of [P8], by Theorems 4.7 and 4.11 of [P1] and
by (23.6.2) we have ||μ|| = v(μ,B(T ))(T ) = v(μ,Bc(T ))(

⋃∞
1 Kn) =

∫
⋃∞
1 Kn

|f |dv(μθ, δ(C)) =∫
⋃∞
1 Kn

|f |dμ|θ||δ(C) =
∫
⋃∞
1 Kn

|f |dμ|θ||B(T ) =
∫
T |f |dλ = ||f ||1. Then, the mapping Φ : L1(λ) →

M(T ) given by Φ(f)(∙) =
∫
(∙) fdμθ is linear and isometric so that Mλ = Φ(L1(λ)) = {μ ∈M(T ) :

there exists f ∈ L1(λ) such thatμ(∙) =
∫
(∙) fdμθ} is complete with respect to the norm on M(T ).

Therefore, Mλ is a closed subspace of M(T ). Then by the Hahn-Banach theorem, Mλ is a weakly
closed subspace of M(T ).

Let μn(∙) =
∫
(∙) fndμθ, n ∈ NI. Then by the foregoing argument μn, n ∈ NI, belong to M(T ).

By hypothesis, limn μn(U) ∈ KI for each open Baire set U in T and hence by Theorem 18.6 of
[P11] there exists μ0 ∈ M(T ) such that μn → μ0 weakly in M(T ). As (μn)∞1 ⊂ Mλ and as Mλ

is weakly closed, μ0 ∈Mλ and hence there exists f ∈ L1(λ) such that μ0(∙) =
∫
(∙) fdμθ on B(T ).

Moreover, as μn → μ0 weakly in M(T ), (μn)∞n=0 is weakly bounded and hence by Theorem 3.18
of [Ru2], supn∈NI∪{0} ||μn|| =M <∞ and further, μn(A)→ μ0(A) for each A ∈ B(T ).

Let g be a bounded Borel measurable function on T and let ε > 0. Then there exists a B(T )-
simple function s such that ||g − s||T < ε

3M . Let s =
∑r

i=1 αiχAi with (Ai)
r
1 ⊂ B(T ). Choose n0
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such that
|αi||μn(Ai)− μ0(Ai)| <

ε

3r
(23.6.2)

for i = 1, 2, ..., r and for n ≥ n0. Then,

|
∫

T

gfndμθ −
∫

T

sfndμθ| ≤ ||g − s||T (
∫

T

|fn|dλ) = ||g − s||T ||μn|| <
ε

3
(23.6.3)

for all n ∈ NI and

|
∫

T

gfdμθ −
∫

T

sfdμθ| ≤ ||g − s||T (
∫

T

|f |dλ) = ||g − s||T ||μ0|| <
ε

3
. (23.6.4)

Then by (23.6.2), (23.6.3) and (23.6.4) we have

|
∫

T

gfndμθ −
∫

T

gfdμθ| < ε

for n ≥ n0 and hence (23.6.1) holds for bounded Borel measurable functions g.

If g is bounded and λ-measurable, then there exists a λ-null set N ∈ B(T ) such that gχT\N
is Borel measurable and hence (23.6.1) holds for bounded λ-measurable functions g. Moreover,
since (23.6.1) implies that fn → f weakly in L1(λ), f is unique in L1(λ).

If fn → h λ-a.e. in T , then by (23.6.1) (with g = χA, A ∈ Bc(T )) and by Proposition
2.13 of [P8], limn

∫
A fndμθ =

∫
T hdμθ for each A ∈ Bc(T ) and consequently, again by (23.6.1),∫

A hdμθ =
∫
A fdμθ for A ∈ Bc(T ). Let ν(A) =

∫
A(f − h)dμθ for A ∈ Bc(T ). Then ν is a null

measure on Bc(T ) and hence v(ν)(N(f−h)) =
∫
N(f−h) |f−h|dv(μθ, δ(C)) =

∫
N(f−h) |f−h|dμ|θ| =∫

N(f−h) |f − h|dλ = 0 by Proposition 2.11 of [P8] and by Theorems 4.7 and 4.11 of [P1]. There-

fore, f = h λ-a.e. in T . Since
∫
A fdμθ =

∫
A hdμθ =

∫
⋃∞
1 (A∩Kn)

hdμθ for A ∈ B(T ), where

N(f) ⊂ N ∪
⋃∞
1 Kn, (Kn)

∞
1 ⊂ C and N is λ-null, the last part holds by the equivalence of (i)

and (iii) of Proposition 2.13 of [P8].

The rest of the section is devoted to generalize Theorem 23.6 to vector measures. We begin
with the following lemma.

Lemma 23.7. Let X be a quasicomplete lcHs and let m : δ(C) → X be σ-additive and
δ(C)-regular. Let f : T → KI belong to L1(m). Then:

(i) There exists B ∈ Bc(T ) such that N(f) ⊂ B.

(ii) Let γ : B(T ) → X be defined by γ(A) =
∫
A∩B fdm for A ∈ B(T ). Then γ is σ-additive

and B(T )-regular.

Proof. As f is m-measurable, there exists M ∈ Bc(T ) such that ||m||(M) = 0 and such that
fχT\M is Bc(T )-measurable. Consequently, N(fχT\M ) ∈ Bc(T ) so that N(f) ⊂ N(fχT\M ) ∪
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M = B (say). Thus (i) holds.

(ii) For A ∈ B(T ), A∩B is σ-bounded and Borel and hence A∩B ∈ Bc(T ). Since
∫
(∙) fdm is σ-

additive on Bc(T ) by Theorem 11.8(ii) and by Remark 12.5 of [P10], it follows that γ(∙) = γ(∙∩B)
is σ-additive on B(T ).

Claim 1. γ is Borel inner regular.

In fact, let A ∈ B(T ) and let B be as in (i). Then there exists (Ek)∞1 ⊂ δ(C) such that
Ek ↗ B ∩ A. Let ε > 0 and q ∈ Γ. Since γ is σ-additive on B(T ), by Proposition 2.2 of [P8],
||γ||q is continuous on B(T ) and hence there exists k0 such that ||γ||q((A∩B)\Ek) < ε

2 for k ≥ k0.
On the other hand, by Theorem 11.8(iii)(c) and by Remark 12.5 of [P10], there exists δ > 0 such
that ||γ||q(F ) < ε

2 whenever F ∈ Bc(T ) with ||m||q(F ) < δ. Since m is δ(C)-regular by hypothe-
sis, there exists C ∈ C such that C ⊂ Ek0 and ||m||q(Ek0\C) < δ. Then ||γ||q(Ek0\C) <

ε
2 . Then

||γ||q(A\C) < ε since ||γ||q(A\B) = 0. Hence the claim holds.

Πq ◦ γ : B(T ) → X̃q is σ-additive and hence has bounded range. Then by Proposition 10.14
of [P10], {x∗ ◦ γ : x∗ ∈ U0q } = {Ψx∗(Πq ◦ γ) : x

∗ ∈ U0q } is bounded in M(T ). By Claim 1 γ is
Borel inner regular on B(T ), and hence, given A ∈ B(T ), q ∈ Γ and ε > 0, there exists a compact
K ⊂ A such that ||γ||q(A\K) < ε. Then by the said proposition of [P10] we have

sup
x∗∈U0q

v(x∗ ◦ γ)(A\K) = ||Πq ◦ γ||(A\K) = ||γ||q(A\K) < ε

and hence {(x∗ ◦ γ) : x∗ ∈ U0q } is uniformly Borel inner regular on B(T ). Consequently, by
Theorem 2 of [P4], {x∗ ◦ γ : x∗ ∈ U0q } is uniformly Borel regular on B(T ) and arguing as in the
above invoking Proposition 10.14 of [P10], we conclude that γ is Borel regular on B(T ).

Using the above lemma, we give in the following theorem two generalizations of the a.e. con-
vergence part of Theorem 23.6 to σ-additive δ(C)-regular vector measures and this result is a
strengthened vector measure analogue of Proposition 4.8 of [T].

Theorem 23.8. Let X be a quasicomplete lcHs with topology τ and let m : δ(C) → X be
σ-additive and δ(C)-regular. Let (fn)∞1 ⊂ L1(m) and let f : T → KI ,or [−∞,∞] be such that
fn → f m-a.e. in T (see Definition 10.4 of [P10]).

(a) Suppose (
∫
U fndm)

∞
1 converges in X in τ for each open Baire set U in T . Then the

following hold:

(a)(i) f ∈ L1(m).

(a)(ii) For A ∈ B(T ), ∫

A

fndm→
∫

A

fdm in τ
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and for each q ∈ Γ, the onvergence is uniform with respect to A ∈ B(T ).

(a)(iii) For bounded m-measurable scalar functions g on T ,
∫

T

fngdm→
∫

T

fgdm in τ.

(b) Suppose (
∫
U fndm)

∞
1 converges weakly in X for each open Baire set U in T . Then the

following hold:

(b)(i) f ∈ L1(m).

(b)(ii) For A ∈ B(T ), ∫

A

fndm→
∫

A

fdmweakly.

(b)(iii) For bounded m-measurable scalar functions g on T
∫

T

fngdm→
∫

T

fgdm weakly.

Proof.

(a)(i) and (b)(i). Let U be an open Baire set in T . By hypothesis (a) (resp. (b)) there exists
a vector xU ∈ X such that

lim
n

∫

U

fndm = xU in τ(resp. weakly).

Then in both the cases, by Theorem 11.8(v) and Remark 12.5 of [P10]

lim
n

∫

U

fnd(x
∗ ◦m) = x∗(xU ) (23.8.1)

for x∗ ∈ X∗. On the other hand, by hypothesis and by Theorem 4.4(i) of [P2], x∗ ◦m = μθ for
some θ ∈ K(T )∗ and hence by Theorem 23.6 we have

lim
n

∫

U

fnd(x
∗ ◦m) =

∫

U

fd(x∗ ◦m) (23.8.2)

for x∗ ∈ X∗. Then by (23.8.1) and (23.8.2) we have

x∗(xU ) =

∫

U

fd(x∗ ◦m)

for each open Baire set U in T and for x∗ ∈ X∗. Consequently, by Theorem 22.5, (a)(i) (resp.
(b)(i)) holds.

(a)(ii) Let f0 = f . By (a)(i) and by Lemma 23.7, there exists Bn ∈ Bc(T ) such that N(fn) ⊂
Bn and γn : B(T ) → X given by γn(A) =

∫
A∩Bn

fndm for A ∈ B(T ), is σ-additive and Borel
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regular for n ∈ NI ∪ {0}. By hypothesis, limn γn(U) ∈ X in τ for each open Baire set U in T .
Since X is also sequentially complete, by Theorem 18.23 of [P11] there exists a unique X-valued
σ-additive measure γ on B(T ) such that

lim
n

∫

T

gdγn =

∫

T

gdγ ∈ X (23.8.3)

in τ for each bounded Borel measurable scalar function g on T .

Claim 1. For a bounded Borel measurable scalar function g on T
∫

T

gdγn =

∫

T

fngdm (23.8.4)

for n ∈ NI.

In fact, (22.8.4) clearly holds for B(T )-simple functions. Choose a sequence (sn)∞1 of B(T )-
simple functions such that sn → g and |sn| ↗ |g| pointwise (in fact, uniformly) in T . Then by
LDCT (Theorem 15.3(i) of [P10]) and by the validity of (23.8.4) for B(T )-simple functions we
have ∫

T

gdγn = lim
k

∫

T

skdγn = lim
k

∫

T

fnskdm =

∫

T

fngdm

since g and fng are m-integrable in T and since g is γn integrable in T by (i)(b) and (ii) of
Theorem 11.9 and by Remark 12.5 of [P10]. Hence the claim holds.

Let B =
⋃∞
n=0Bn. Then B ∈ Bc(T ) and fn = 0 in T\B for n ∈ NI ∪ {0}. For x∗ ∈ X∗, let

θ be as in the proof of (a)(i). Then by hypothesis (a), by Theorem 11.8(v) and Remark 12.5 of
[P10], (

∫
U fnd(x

∗ ◦m))∞1 is convergent in KI for each open Baire set U in T . Hence by Theorem
23.6,

lim
n

∫

T

fngd(x
∗ ◦m) =

∫

T

fgd(x∗ ◦m) (23.8.5)

for each bounded Borel measurable funxtion g on T . Then for A ∈ B(T ), by (23.8.4) and (23.8.5)
and by Theorem 11.8(v) and Remark 12.5 of [P10] (since f ∈ L1(m) by (a)(i)), we have

lim
n
(x∗ ◦ γn)(A) = lim

n

∫

A

fnd(x
∗ ◦m) = lim

n

∫

A∩B
fnd(x

∗ ◦m)

=

∫

A∩B
fd(x∗ ◦m)

=

∫

A

fd(x∗ ◦m)

= (x∗ ◦ γ0)(A). (23.8.6)

Moreover, by (23.8.3) we have

lim
n
(x∗ ◦ γn)(A) = lim

n
(x∗ ◦ γn)(A ∩B) = (x

∗ ◦ γ)(A ∩B) = (x∗ ◦ γ)(A) (23.8.7)
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for x∗ ∈ X∗, since γn(A\B) = 0 for all n so that γ(A\B) = 0. Consequently, by (23.8.6) and
(23.8.7) we have

(x∗ ◦ γ0)(A) = (x
∗ ◦ γ)(A)

for A ∈ B(T ) and for x∗ ∈ X∗. Then, by the Hahn-Banach theorem, γ(A) = γ0(A) and hence,
for A ∈ B(T ), by (23.8.3) we have

lim
n

∫

A

fndm = lim
n
γn(A) = γ(A) = γ0(A) =

∫

A

fdm (23.8.8)

in τ .

In Theorem 12.8 of [P10], take f (q)n = fn for all q ∈ Γ. Note that σ(δ(C)) = Bc(T ). Then in
the notation of the said thorem, by Theorems 11.8(v) and 12.8 and by Remark 12.5 of [P10] and
by (23.8.8) we have

γ(q)n (A) = γ
(q)
n (A ∩B) =

∫

A∩B
fndmq

= Πq(

∫

A∩B
fndm)

→ (Πq ◦ γ0)(A ∩B) = (Πq ◦ γ0)(A)

in X̃q and the limit is uniform with resepect to A ∈ B(T ) for a fixed q ∈ Γ, since it is so with
respect to E ∈ Bc(T ). Hence (a)(ii) holds.

(a)(iii) By hypothesis and by Theorem 18.8 of [P11], for each q ∈ Γ, there exists a finite
constant Mq such that

sup
n∈NI∪{0}

||γn||q(T ) =Mq. (23.8.9)

Let g be a bounded m-measurable scalar function on T and let q ∈ Γ. Then there exists
Nq ∈ Bc(T ) with ||m||q(Nq) = 0 such that hq = gχT\Nq is Bc(T )-measurable and bounded.
Hence, given ε > 0, there exists a Bc(T )-simple function s(q) such that |s(q)| ≤ |hq| and

||hq − s
(q)||T <

ε

3Mq
. (23.8.10)

Let s(q) =
∑r

i=1 αiχAi with (Ai)
r
1 ⊂ Bc(T ). By (a)(ii) there exists n1 such that

|αi||γn(Ai)− γ0(Ai)|q <
ε

3r
(23.8.11)

for i = 1, 2, ..., r and for n ≥ n1. Then by (23.8.11) we have

|
∫

T

s(q)dγn −
∫

T

s(q)dγ0|q ≤
r∑

i=1

|αi||γn(Ai)− γ0(Ai)|q <
ε

3
(23.8.12)
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for n ≥ n1. Moreover, by (23.8.9) and (23.8.10) we have

|
∫

T

s(q)dγn −
∫

T

hqdγn|q ≤ ||s
(q) − hq||T ||γn||q(T ) <

ε

3
(23.8.13)

for n ∈ NI ∪ {0}.

Consequently, by (23.8.12) and (23.8.13)

|
∫
fngdm−

∫

T

fgdm|q = |
∫

T

fnhqdm−
∫

T

fhqdm|q

≤ |
∫

T

(hq − s
(q))dγn|q + |

∫

T

s(q)dγn −
∫

T

s(q)dγ0|q

+ |
∫

T

(s(q) − hq)dγ0|q

< ε

for n ≥ n1. Hence (a)(iii) holds.

(b)(ii) Let x∗ ∈ X∗. Then by hypothesis and by Theorem 4.4(i) of [P2] there exists θ ∈ K(T )∗

such that μθ = x∗◦m. Then by hypothesis, by(b)(i) and by Theorem 23.6 and by Theorem 11.8(v)
and Remark 12.5 of [P10], (b)(ii) holds.

(b)(iii) Let U be an open Baire set in T . Let γn, n ∈ NI ∪{0}, be as in the proof of (a)(ii). By
hypothesis, limn(x∗ ◦ γn)(U) ∈ KI for each x

∗ ∈ X∗. Hence ((γn)(U))
∞
1 is weakly bounded and

hence, by Theorem 3.18 of [Ru2], is bounded in τ . Then for q ∈ Γ, by Theorem 18.8 of [P11],
(23.8.9) holds.

Let x∗ ∈ X∗ be fixed and let qx∗(x) = |x∗(x)| for x ∈ X. By hypothesis there exists a
bounded Bc(T )-measurable function hx∗ such that hx∗ = gχT\Nx∗ where Nx∗ ∈ Bc(T ) with
v(x∗ ◦m)(Nx∗) = 0. Choose a Bc(T )-simple function s such that

||s− hx∗ ||T <
ε

3Mqx∗
. (23.8.14)

Let s =
∑r
1 αiχAi , (Ai)

r
1 ⊂ Bc(T ). Then by (b)(i) and (b)(ii) and by Theorem 11.8(v) and

Remark 12.5 of [P10] there exists n2 such that

|αi||
∫

Ai

fnd(x
∗ ◦m)−

∫

Ai

fd(x∗ ◦m)| <
ε

3r
(23.8.15)

for i = 1, 2, ..., r and for n ≥ n2. Then by (23.8.15) we have

|
∫

T

sfnd(x
∗ ◦m)−

∫

T

sfd(x∗ ◦m)| ≤
r∑

i=1

|αi||
∫

Ai

(fn − f)d(x
∗ ◦m)| <

ε

3
(23.8.16)
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for n ≥ n2. Then by (23.8.14), by Proposition 10.12(iv), by Theorem 11.8(v) and Remark 12.5
of [P10] we have

|
∫

T

sfnd(x
∗ ◦m)−

∫

T

hx∗fnd(x
∗ ◦m)|

= |
∫

T

(s− hx∗)d(x
∗ ◦ γn)|

≤ ||s− hx∗ ||T v(x
∗ ◦ γn)(T )

= ||s− hx∗ ||T ||γn||qx∗ (T ) <
ε

3
(22.8.17)

for n ∈ NI ∪ {0}. Then by (b)(i) and by Theorems 11.8(v) and 11.9(ii) and Remark 12.5 of [P10],
and by (23.8.16) and (23.8.17),

x∗(

∫

T

fngdm−
∫

T

fgdm)→ 0

as n→∞ for each x∗ ∈ X∗ and hence (b)(iii) holds.

Thus Theorem 23.8 generalizes Theorem 23.6 to δ(C)-regular σ-additive quasicomplete lcHs
valued vector measures when fn → f m-a.e. in T . In order to generalize the said theorem when
fn doesn’t satisfy the m-a.e. convergence hypothesis, we restrict m to be Banach space-valued.
To this end, we adapt the proofs of Lemmas 1, 2 and 3 on pp.126-129 of [T] and then we give a
stronger vector measure version of Theorem 4.9 of [T] in Theorem 23.12 below.

Lemma 23.9. Let X be a Banach space and let m : δ(C) → X be σ-additive and δ(C)-
regular. Let (fn)∞1 ⊂ L1(m). Then there exists a sequence (Kn)

∞
1 ⊂ C such that each fn

vanishes in T\
⋃∞
1 Kn.

Proof. By Lemma 23.7(i), for each n ∈ NI, there exists Bn ∈ Bc(T ) such that N(fn) ⊂ Bn
so that

⋃∞
1 N(fn) ⊂

⋃∞
1 Bn ∈ Bc(T ). Since

⋃∞
1 Bn is σ-bounded, there exists a sequence

(Kn)
∞
1 ⊂ C such that

⋃∞
1 Bn ⊂

⋃∞
1 Kn. Then fn = 0 in T\

⋃∞
1 Kk for each n.

Lemma 23.10. Let X and m be as in Lemma 23.9 and let H be a norm determining set in
X∗. Given a sequence (Kn)

∞
1 ⊂ C, there exists a sequence (x

∗
n)
∞
1 ⊂ H such that every σ-Borel

set A ⊂
⋃∞
1 Kn is m-null whenever A is (x∗n ◦m)-null for each n ∈ NI.

Proof. By Lemma 18.2 of [P11], A ∩ Kn ∈ δ(C) for n ∈ NI. Choose a relatively compact
open set Vn such that Kn ⊂ Vn. Arguing as in the proof of Lemma 22.2, we can find a sequence
(x∗n,r)

∞
r=1 ⊂ H such that E ∈ B(Vn) is m-null whenever E is (x∗n,r ◦m)-null for all r ∈ NI. Let

(x∗n)
∞
1 = {x

∗
n,r : n, r ∈ NI}. Then A is m-null whenever A is (x∗n ◦m)-null for each n ∈ NI since

A ∩Kn ∈ B(Vn) for all n and A =
⋃∞
1 (A ∩Kn).

Lemma 23.11. Let μk : δ(C) → KI, k ∈ NI, be σ-additive and δ(C)-regular and let (fn)∞1 ⊂⋂∞
k=1 L1(μk). Suppose limn

∫
U fndμk ∈ KI for each k ∈ NI and for each open Baie set U in T . Then
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there exists a sequence (gn)∞1 such that each gn is a convex combination of (fk)k≥n and such that
(gn)

∞
1 converges in mean in L1(μk) and also converges pointwise μk-a.e. in T for each k ∈ NI.

Proof. By hypothesis and by Theorem 23.6, for each k ∈ NI, (fn) converges weakly to some
hk ∈ L1(μk). Let us embed

⋂∞
k=1 L1(μk) in the diagonal of the product space P = Π

∞
k=1L1(μk).

For each fn, let f̃n = (fn, fn, ...) ∈ P . Clearly, P is a pseudo-metrizable locally convex space with
the pseudo-norm ρ given by

ρ((ϕk)
∞
1 , (ψk)

∞
1 ) =

∞∑

k=1

1

2k

∫
T |ϕk − ψk|dv(μk)

1 +
∫
T |ϕk − ψk|dv(μk)

for (ϕk)∞1 , (ψk)
∞
1 ∈ P . Then by Theorem 4.3, Ch. IV of [Scha], (f̃n)∞n=1 converges weakly to

some ĥ = (hk)∞k=1 ∈ P . Then (f̃n)n≥k converges to ĥ weakly for each k and hence by the Hahn-
Banach theorem (see the proof of Theorem 3.13 of [Ru2]), ĥ = (hi)∞1 belongs to the closed convex
hull of (f̃n)n≥k for each k. Then there exists a sequence (g̃n) such that g̃n ∈ co(f̃k, f̃k+1, ...) with

ρ(g̃n, ĥ)→ 0. Let gn =
∑N(n)

i=n αifi, αi ≥ 0,
∑N(n)

i=n αi = 1 so that g̃n = (gn, gn, ...). Then gn → hk
in mean in L1(μk) for each k.

For k = 1, there exists a subsequence (g1,r)∞r=1 of (gn)
∞
1 such that g1,r → h1 μ1-a.e. in T .

Proceeding successively, there exists a subsequence (gn,r)∞r=1 of (gn−1,r)
∞
r=1 such that gn,r → hn

μn-a.e. in T . Then the diagonal sequence (gn,n)∞n=1 is a subsequence of (gn)
∞
n=1 and converges to

hk μk-a.e. in T for each k. Clearly, (gn,n)∞n=1 also converges in mean to hk in L1(μk) for each k.
Hence the lemma holds.

Theorem 23.12 (Full generalization of Theorem 23.6 to Banach space-valued mea-
sures on δ(C). Let X be a Banach space with toplogy τ and let H be a norm determining set
in X∗ with the Orlicz property. Let m : δ(C)→ X be σ-additive and δ(C)-regular.

(a) Suppose (fn)∞1 ⊂ L1(m) is such that for each open Baire set U in T , there exists a vector
xU ∈ X such that

∫
U fndm→ xU in τ . Then the following hold:

(a)(i) There exists a function f ∈ L1(m) such that
∫
U fndm→

∫
U fdm in τ .

(a)(ii) f in (a)(i) is unique upto m-a.e. in T .

(a)(iii) For A ∈ B(T ),
∫
A fndm→

∫
A fdm in τ .

(a)(iv) For each bounded m-measurable scalar function g on T ,
∫
T fngdm→

∫
T fgdm in τ .

(b) Suppose (fn)∞1 ⊂ L1(m) is such that for each open Baire set U in T , there exists a vector
xU ∈ X such that

∫
U fndm→ xU in σ(X,H). Then the following hold:

(b)(i) There exists f ∈ L1(m) such that
∫
U fndm→

∫
U fdm in σ(X,H).
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(b)(ii) f in (b)(i) is unique upto m-a.e. in T .

(b)(iii) For A ∈ B(T ),
∫
A fndm→

∫
A fdm in σ(X,H).

(b)(iv) For each bounded m-measurable scalar function g on T ,
∫
T fngdm→

∫
T fgdm in σ(X,H).

Proof. Let H0 = {x∗ : |x∗| ≤ 1}. By hypothesis (a) (resp. (b)), and by Theorem 3.5(viii) and
Remark 4.3 of [P8], limn

∫
U fnd(x

∗ ◦m) = x∗(xU ) ∈ KI for each x∗ ∈ H0 (resp. in H). By Lemma
23.9, there exists (Kn)

∞
1 ⊂ C such that each fn vanishes in T\

⋃∞
1 Kk. By Lemma 23.10, we

associate the sequence (Kn)
∞
1 with a sequence (x∗n)

∞
1 ⊂ H0 (resp. ⊂ H) satisfying the property

mentioned in the said lemma. Then by Lemma 23.11 there exists a sequence (gn)∞1 such that
each gn is of the form

gn =

N(n)∑

i=n

α
(n)
i fi, α

(n)
i ≥ 0 and

N(n)∑

i=n

α
(n)
i = 1 (23.12.1)

and such that (gn) converges in mean in L1(x∗i ◦m) and converges (x
∗
i ◦m)-a.e. in T for each

i ∈ NI. Then by Lemma 23.10, (gn)∞1 converges m-a.e. in T . Let f be the m-a.e. pointwise limit
of (gn)∞1 .

(a)(i) Let U be an open Baire set in T and let xU ∈ X be as in the hypothesis (a). Then,
given ε > 0, there exists n0 such that

|
∫

U

fndm− xU | < ε (23.12.2)

for n ≥ n0. Let (gn)∞1 be as in (23.12.1). Then

|
∫

U

gndm− xU | = |
N(n)∑

i=n

(α
(n)
i

∫

U

fidm− α
(n)
i xU )| ≤

N(n)∑

i=n

α
(n)
i ε = ε

for n ≥ n0 and hence

lim
n

∫

U

gndm = xU in τ. (23.12.3)

Then by Theorem 23.8(a), f ∈ L1(m) and
∫

U

gndm→
∫

U

fdm in τ. (23.12.4)

Then by (23.12.3) and (23.12.4) we have
∫

U

fdm = xU

and hence by hypothesis,

lim
n

∫

U

fndm =

∫

U

fdm in τ.
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Thus (a)(i) holds.

(b)(i) Let x∗ ∈ H. By hypothesis (b) and by Theorem 3.5(v) and Remark 4.3 of [P8],

lim
n

∫

U

fnd(x
∗ ◦m) = lim

n
x∗(

∫

U

fndm) = x
∗(xU ) (23.12.5)

for each open Baire set U in T . Hence, given ε > 0, there exists n1 such that

|
∫

U

fnd(x
∗ ◦m)− x∗(xU )| < ε (23.12.6)

for n ≥ n1. Then by (23.12.1) and (23.12.6) we have

|
∫

U

gnd(x
∗ ◦m)− x∗(xU )| = |

N(n)∑

i=n

(α
(n)
i

∫

U

fid(x
∗ ◦m)− α(n)i x∗(xU ))| < ε

for n ≥ n1. Hence

lim
n

∫

U

gnd(x
∗ ◦m) = x∗(xU ) (23.12.7)

for x∗ ∈ H. By hypothesis and by Theorem 4.4(i) of [P2] there exists θ ∈ K(T )∗ such that
μθ = x

∗ ◦m and hence by (23.12.7) and by Theorem 23.6, f ∈ L1(x∗ ◦m) and

lim
n

∫

U

gnd(x
∗ ◦m) =

∫

U

fd(x∗ ◦m) (23.12.8)

for x∗ ∈ H. Then by (23.12.7) and (23.12.8)
∫

U

fd(x∗ ◦m) = x∗(xU )

for x∗ ∈ H. Consequently, by Theorem 22.4, f ∈ L1(m) and by by Theorem 3.5(v) and Remark
4.3 of [P8],

x∗(

∫

U

fdm) =

∫

U

fd(x∗ ◦m) = x∗(xU )

for x∗ ∈ H. As H is norm determining, we conclude that
∫

U

fdm = xU (23.12.9)

and hence by (23.12.5) and (23.12.9), (b)(i) holds.

(a)(ii) (resp. (b)(ii))

Claim 1. Let μ1 and μ2 be in M(T ). If μ1(U) = μ2(U) for each open Baire set U in T , then
μ1 = μ2.
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In fact, Let νi = μi|B0(T ) for i = 1, 2. By Proposition 1 of [P13], ν1 and ν2 are Baire regular.
For E ∈ B0(T ), let UE = {U ∈ B0(T ) : U open , U ⊃ E} and let U1 ≥ U2 for U1, U2 ∈ UE if
U1 ⊂ U2. Then UE is a directed set and by the Baire regularity of ν1 and ν2 we have

ν1(E) = lim
U∈UE ,U→E

ν1(U) = lim
U∈UE ,U→E

ν2(U) = ν2(E)

and hence ν1 = ν2 on B0(T ). Then the claim is immediate from the uniqueness part of Proposi-
tion 1 of [P13].

Suppose h is another function in L1(m) such that limn
∫
U fndm =

∫
U hdm in τ (resp. in

σ(X,H)) for open Baire sets U in T . Let x∗ ∈ H0 (resp. x∗ ∈ H). By hypothesis and by
Theorem 4.4(i) of [P2] there exists θ ∈ K(T )∗ such that x∗ ◦m = μθ and as seen in the proof of
Theorem 23.6,

∫
(∙) hd(x

∗ ◦m) and
∫
(∙) fd(x

∗ ◦m) belong to M(T ). Then by hypothesis (a) (resp.
(b)), by Theorem 3.5(v) and Remark 4.3 of [P8] and by Claim 1 above, ν is a null measure where
ν(A) =

∫
A(h− f)d(x

∗ ◦m) for A ∈ B(T ). Then by Proposition 2.11 of [P8] and by Theorem 1.39
of [Ru1], h = f (x∗ ◦m)-a.e. in T . This holds for each x∗ ∈ H0 (resp. x∗ ∈ H) and hence by
Lemmas 23.9 and 23.10, h = f m-a.e. in T . Therefore, (a)(ii) (resp. (b)(ii)) holds.

(b)(iii) and (b)(iv) Let f0 = f . For x∗ ∈ X∗, by (b)(i) and by Theorem 3.5(v) and Remark
4.3 of [P8] we have

lim
n

∫

U

fnd(x
∗ ◦m) =

∫

U

fd(x∗ ◦m)

for each open Baire set U in T . Moreover, by hypothesis and by Theorem 4.4(i) of [P2] there
exists θ ∈ K(T )∗ such that x∗ ◦m = μθ and hence by Theorem 23.6 and by the uniqueness of f
in L1(x∗ ◦m), we have

lim
n

∫

T

gfnd(x
∗ ◦m) =

∫

T

gfd(x∗ ◦m) (23.12.9)

for each bounded m-measurable scalar function g on T . Then by (23.12.9), by Theorem 3.5 and
Remark 4.3 of [P8] and by the fact that (fn)∞n=0 ⊂ L1(m), we conclude that

∫
T fngdm→

∫
T fgdm

in σ(X,H). Hence (b)(iv) holds. Let A ∈ B(T ) and let Bn, n ∈ NI ∪ {0}, be as in the proof of
Theorem 23.8(a). Let B =

⋃∞
n=0Bn. Then, by (b)(iv) we have x

∗(
∫
A fndm) = x

∗(
∫
A∩B fndm)→

x∗(
∫
A∩B fdm) = x

∗(
∫
A fdm) for x

∗ ∈ H. Hence (b)(iii) also holds.

(a)(iii) Let Bn, n ∈ NI ∪ {0}, B and f0 be as in the proof of (b)(iii) and (b)(iv). Let γn,n ∈
NI ∪ {0}, be as in the proof of Theorem 23.8(a)(ii). Then by hypothesis, limn γn(U) ∈ X in τ for
each open Baire set U in T and hence, by Theorem 18.21 of [P11] there exists a unique X-valued
σ-additive measure γ on B(T ) such that

lim
n

∫

T

gdγn =

∫

T

gdγ (23.12.10)

in τ for each bounded Borel measurable scalar function g on T . Then by Claim 1 in the proof of
Theorem 23.8, by Theorem 3.5 and Remark 4.3 of [P8] and (23.12.10) we have
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lim
n

∫

T

gfnd(x
∗ ◦m) = lim

n
x∗(

∫

T

gfndm) = lim
n
x∗(

∫

T

gdγn)

= x∗(

∫

T

gdγ)

for x∗ ∈ X∗. By (23.12.9) which also holds for x∗ ∈ X∗, and by Theorem 3.5 and Remark 4.3 of
[P8] we have

lim
n

∫

T

gfnd(x
∗ ◦m) =

∫

T

gfd(x∗ ◦m) = x∗(
∫

T

gfdγ0)

and hence

x∗(

∫

T

gdγ) = x∗(

∫

T

gdγ0)

for x∗ ∈ X∗. Then by the Hahn-Banach theorem and by Claim 1 in the proof of Theorem 23.8
we have ∫

T

gdγ =

∫

T

gdγ0 =

∫

T

gfdm (23.12.11)

for each bounded Borel measurable function g on T and hence by (23.12.10) and (23.12.11) we
have

lim
n

∫

T

fngdm =

∫

T

fgdm in τ. (23.12.12)

If g is a bounded m-measurable scalar function on T , then there exists a bounded Borel measur-
able function h such that g = h m-a.e. in T and hence by (23.12.12), (a)(iv) holds. Moeover,
(a)(iii) is immediate from (a)(iv).

Remark 23.13. Suppose X is a quasicomplete lcHs with topology τ and m : B(T ) → X is
σ-additive and Borel regular. Then, in the light of theorem 22.11, the analogue of Theorem 23.8
for m holds here verbatim. Moreover, if X is a Banach space, then in view of Theorem 21.1(iv)

applied to N(f) ∈ B̃(T ), Lemma 23.9 holds here with fn vanishing in m-a.e. in T\
⋃∞
1 Kk. Then

the analogue of Theorem 23.12 for m holds here verbatim if we use Theorem 22.10 in place of
Theorem 22.4. The details are left to the reader.

24. DUALS OF L1(m) AND L1(n)

Let X be a Banach space. Suppose m : B(T ) → X (resp. n : δ(C) → X) is σ-additive and
B(T )-regular (resp. and δ(C)-regular). The present section is devoted to the study of the duals
of L1(m) and L1(n). Also are given vector measure analogues of Theorem 4.1 and Proposition
5.9 of [T].

Lemma 24.1. Let X be a Banach space and let m : B(T ) → X (resp. n : δ(C) → X) be
σ-additive and B(T )-regular (resp. and δ(C)-regular). If u ∈ L1(m)∗ (resp. v ∈ L1(n)∗), then
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there exists a unique σ-additive and B(T )-regular (resp. and δ(C)-regular) scalar measure ηu on
B(T ) (resp. ζv on δ(C)) such that

u(f) =

∫

T

fdηu and
∫

T

|f |dv(ηu,B(T )) ≤ ||u||m
•
1(f, T ) (24.1.1)

for f ∈ L1(m) where
||u|| = sup{|u(f)| : f ∈ L1(m),m

•
1(f, T ) ≤ 1}

(

resp. v(f) =
∫

T

fdζv and
∫

T

|f |dv(ζv, δ(C)) ≤ ||v||n
•
1(f, T ) (24.1.1′)

for f ∈ L1(n) where
||v|| = sup{|v(f)| : f ∈ L1(n),n

•
1(f, T ) ≤ 1}).

Proof. Let u ∈ L1(m)∗ (resp. v ∈ L1(n)∗). Then

|u(f)| ≤ ||u||m•1(f, T ) (24.1.2)

for f ∈ L1(m)
(resp. |v(f)| ≤ ||v||n•1(f, T ) (24.1.2′)

for f ∈ L1(n)).

Let ϕ ∈ K(T ) (resp. ϕ ∈ Cc(T,C) with C ∈ C- see Notation 19.1 of [P11]). Then, as
ϕ ∈ L1(m) (resp. L1(n)) by Lemma 20.8, by (24.1.2) (resp. by (24.1.2’)), we have

|u(ϕ)| ≤ ||u||m•1(ϕ, T ) = ||u||( sup
|x∗|≤1

∫

T

|ϕ|dv(x∗ ◦m))

≤ ||u||||ϕ||T ||m||(T )

(resp. |v(ϕ)| ≤ ||v||n•1(ϕ, T ) ≤ ||v||||ϕ||T ||n||(C)).

Hence u|K(T ) ∈ K(T )
∗
b (see pp. 65 and 69 of [P2]). Let u|K(T ) = θu (by Theorem 4.4(i) oby

f [P2], this is determined uniquely by u)and let ηu = μθu |B(T ), where μθu is the complex Radon
measure induced by θu in the sense of Definition 4.3 of [P1]. Then ηu is σ-additive on B(T ) and
is Borel regular by Theorem 5.3 of [P2] and moreover,

u(ϕ) =

∫

T

ϕdηu =

∫

T

ϕdμθu = θu(ϕ) (24.1.3)

for ϕ ∈ C0(T ). (Resp. v|K(T ) ∈ K(T )
∗. Let v|K(T ) = θ′v. By Theorem 4.4(i) of [P2], this is

uniquely determined bt v and ζv = μθ′v |δ(C) is σ-additive on δ(C) and is δ(C)-regular by Theorem
4.7 of [P1] and

v(ϕ) =

∫

T

ϕdζv =

∫

T

ϕdμθ′v = θ
′
v(ϕ) (24.1.3′)
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for ϕ ∈ K(T )).

Then by (12) on p. 55 of [B] and by (24.1.2) and (24.1.3) (resp. and by (24.1.2’) and (24.1.3’))
we have

|θu|(|ϕ|) = sup
Ψ∈K(T ),|Ψ|≤|ϕ|

|θu(Ψ)|

= sup
Ψ∈K(T ),|Ψ|≤|ϕ|

|u(Ψ)|

≤ ||u|| sup
Ψ∈K(T ),|Ψ|≤|ϕ|

m•1(Ψ, T )

= ||u||m•1(ϕ, T ) (24.1.4)

(resp.

|θ′v|(|ϕ|) = sup
Ψ∈K(T ),|Ψ|≤|ϕ|

|v(Ψ)| ≤ ||v|| sup
Ψ∈K(T ),|Ψ|≤|ϕ|

n•1(Ψ, T )

= ||v||n•1(ϕ, T ) (24.1.4′))

for ϕ ∈ K(T ). Then by Theorems 4.7 and 4.11 of [P1] and by the last part of Theorem 3.3 of
[P2] (resp. by Theorems 4.7 and 4.11 of [P1]) and by (24.1.4) (resp. by (24.1.4’)) we have

|θu|(|ϕ|) =
∫

T

|ϕ|dμ|θu| =
∫

T

|ϕ|dv(μθ,B(T )) ≤ ||u||m
•
1(ϕ, T ) (24.1.5)

(resp. |θ′v|(|ϕ|) =
∫

T

|ϕ|dμ|θ′v | =
∫

T

|ϕ|dv(μθ′v , δ(C)) ≤ ||v||n
•
1(ϕ, T ) (24.1.5′))

for ϕ ∈ K(T ).

Let =+ be the set of all non negative lower semicontinuous functions on T .

Claim 1. For f ∈ =+ ∩ L1(m) (resp. f ∈ =+ ∩ L1(n)),

|θu|
∗(f) ≤ ||u||m•1(f, T ) (24.1.6)

(resp. |θ′v|
∗(f) ≤ ||v||n•1(f, T ) (24.1.6′))

where |θu|∗ and |θ′v|∗ are as in Definition 1, § 1, Ch. IV of [B].

In fact, by the said definition of [B] and by (24.1.5) we have

|θu|
∗(f) = sup

ϕ∈K(T )+,ϕ≤f
|θu|(ϕ) ≤ ||u|| sup

ϕ∈K(T )+,ϕ≤f
m•1(ϕ, T ) ≤ ||u||m

•
1(f, T )

for f ∈ =+ ∩ L1(m). Similarly, by (24.1.5’), (24.1.6’) holds.
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Claim 2. Let f ∈ L1(m) (resp. f ∈ L1(n)). Then
∫

T

|f |dv(ηu,B(T )) =
∫

T

|f |dv(μθu ,B(T )) ≤ ||u||m
•
1(f, T ) (24.1.7)

(resp.
∫

T

|f |dv(ζv, δ(C)) =
∫

T

|f |dv(μθ′v , δ(C)) ≤ ||v||n
•
1(f, T ). (24.1.7′)).

In fact, as ηu = μθu |B(T ) (resp. ζv = μθ′v |δ(C)) it suffices to prove the claim for μθu (resp.
μθ′v). Note that |f | ∈ L1(m) (resp. L1(n)) by Theorem 3.5(vii) and Remark 4.3 of [P8] . Given
ε > 0, by Theorem 17.2 (resp. by Theorem 17.3) of [P11], there exist functions g and h on T
such that 0 ≤ g ≤ |f | ≤ h m-a.e. (resp. n-a.e.) in T , g is upper semicontinuous, bounded and
m-integrable in T (resp. and n-integrable in T ), h is lower semicontinuous and m-integrable in
T (resp. and n-integrable in T ) and

m•1(h− g, T ) <
ε

||u||
(24.1.8)

(resp. g and h are Bc(T )-measurable and

n•1(h− g, T ) <
ε

||v||
(24.1.8′)).

As h and −g are lower semicontinuous, h − g ∈ =+ ∩ L1(m) (resp. h − g ∈ =+ ∩ L1(n)) by
Theorems 3.3 and 3.4, § 3, Ch. III of [MB]. Then by Proposition 1, no.2, § 4, Ch. IV of [B] and
by (24.1.6) and (24.1.8) (resp. and by (24.1.6’) and (24.1.8’)) we have

0 ≤
∫

T

(h− g)dv(μθu ,B(T )) = |θu|
∗(h− g) ≤ ||u||m•1(h− g, T ) < ε (24.1.9)

(resp. 0 ≤
∫

T

(h− g)dv(μθ′v , δ(C)) = |θ
′
v|
∗(h− g) ≤ ||v||n•1(h− g, T ) < ε (24.1.9′)).

Then, as h ∈ =+ ∩ L1(m) (resp. h ∈ =+ ∩ L1(n)), by Claim 1, by Proposition 1, no. 2, § 4,
Ch. IV of [B] and by (24.1.9) (resp. and by (24.1.9’)) we have

∫

T

|f |dv(μρ,R) ≤
∫

T

hdv(μρ,R)

= |ρ|∗(h) ≤ ||w||ω•1(h, T )

≤ ||w||{ω•1(h− g, T ) + ω
•
1(g, T )}

< ε+ ||w||ω•1(g, T )

≤ ε+ ||w||ω•1(f, T )

since 0 ≤ g ≤ |f |, where R = B(T ), w = u and ρ = θu (resp. R = δ(C), w = v and ρ = θ′v). As
ε > 0 is arbitrary, the claim holds.
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Claim 3. For f ∈ L1(m), u(f) =
∫
T fdηu =

∫
T fdμθu and for f ∈ L1(n), v(f) =

∫
T fdζv =∫

T fdμθ′v .

In fact, it suffices to prove the claim for f ∈ L1(m) since the proof for f ∈ L1(n) is similar.

Let f ∈ L1(m). Since (Cc(T ),m•1(∙, T )) is dense in L1(m) by Theorem 20.10, there exists
(ϕn)

∞
1 ⊂ Cc(T ) such that

lim
n
m•1(f − ϕn, T ) = 0. (24.1.10)

Then by Claim 2 and by (24.1.10), we have

lim
n

∫

T

|ϕn − f |dv(μθu ,B(T )) ≤ ||u||(limn
m•1(f − ϕn, T )) = 0

and hence by (24.1.3) we have
∫

T

fdμθu = limn

∫

T

ϕndμθu = limn

∫

T

ϕndηu = lim
n
u(ϕn) = u(f)

since u ∈ L1(m)∗. Hence the claim holds.
Now the lemma is immediate from Claims 2 and 3.

Theorem 24.2. Let X be a Banach space and let m : B(T ) → X be σ-additive and B(T )-
regular (resp. let n : δ(C) → X be σ-additive and δ(C)-regular). Let Y = {η : B(T ) → KI :
σ-additive and B(T )-regular such that there exists a constant M satisfying

∫
T |f |dv(η,B(T )) ≤

Mm•1(f, T ) for f ∈ L1(m)} and let Z = {ζ : δ(C) → KI : σ-additive and δ(C)-regular such
that there exists a constant M satisfying

∫
T |f |dv(ζ, δ(C)) ≤ Mn•1(f, T ) for f ∈ L1(n)}. Let

|||η||| = sup{|
∫
T fdη| : f ∈ L1(m),m

•
1(f, T ) ≤ 1} for η ∈ Y and let |||ζ||| = sup{|

∫
T fdζ| : f ∈

L1(n),n•1(f, T ) ≤ 1} for ζ ∈ Z. Then:

(i) L1(m)∗ (resp. L1(n)∗) is isometrically isomorphic with (Y, ||| ∙ |||) (resp. (Z, ||| ∙ |||)) so that
L1(m)∗ = Y (resp. L1(n)∗ = Z). Consequently, (Y, ||| ∙ |||) (resp. (Z, ||| ∙ |||)) is a Banach
space.

(ii) The closed unit ball BY of Y (resp. BZ of Z) is given by A = {η ∈ Y :
∫
T |f |dv(η,B(T )) ≤

m•1(f, T ) for f ∈ L1(m)} (resp. B = {ζ ∈ Z :
∫
T |f |dv(ζ, δ(C)) ≤ n

•
1(f, T ) for f ∈ L1(n)}).

(iii) If B+Y = {η ∈ BY : η ≥ 0} (resp. B
+
Z = {ζ ∈ BZ : ζ ≥ 0}), then

m•1(f, T ) = sup
η∈B+Y

∫

T

|f |dη for f ∈ L1(m)

(resp.n•1(f, T ) = sup
ζ∈B+Z

∫

T

|f |dζ for f ∈ L1(n)).
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Proof. Let η ∈ Y and let uη : L1(m)→ KI be given by

uη(f) =

∫

T

fdη (24.2.1)

(resp. let ζ ∈ Z and let vζ : L1(n)→ KI be given by

vζ(f) =

∫

T

fdζ (24.2.1′)).

Then by hypothesis, there exists M > 0 such that

|uη(f)| ≤
∫

T

|f |dv(η,B(T )) ≤Mm•1(f, T ) (24.2.2)

for f ∈ L1(m)

(resp. |vζ(f)| ≤
∫

T

|f |dv(ζ, δ(C)) ≤Mn•1(f, T ) (24.2.2′)

for f ∈ L1(n)). Hence uη ∈ L1(m)∗ (resp. vζ ∈ L1(n)∗).

Conversely, let u ∈ L1(m)∗ (resp. v ∈ L1(n)∗). Then by Lemma 24.1, there exists a unique
ηu ∈ Y (resp. ζv ∈ Z) such that

u(f) =

∫

T

fdηuwith
∫

T

|f |dv(ηu,B(T )) ≤ ||u||m
•
1(f, T ) for f ∈ L1(m)

(resp. v(f) =
∫

T

fdζv with
∫

T

|f |dv(ζv, δ(C) ≤ ||v||n
•
1(f, T ) for f ∈ L1(n)).

Let Φ : L1(m)∗ → Y (resp. Ψ : L1(n)∗ → Z) be given by Φ(u) = ηu (resp. Ψ(v) = ζv) so
that

u(f) =

∫

T

fdηu, f ∈ L1(m) (24.1.11)

(resp.v(f) =
∫

T

fdζv, f ∈ L1(n) (24.1.11′)).

Then by Lemma 24.1, Φ (resp. Ψ) is linear since αηu+ βηv = ηαu+βv on Cc(T ) by the Riesz rep-
resentation theorem and since Cc(T ) is dense in L1(m) (resp. in L1(n)) by theorem 20.10.
Clearly, Φ and Ψ are injective. To show that Φ (resp. Ψ) is surjective, let η ∈ Y (resp.
ζ ∈ Z). Then uη (resp. vζ) given by uη(f) =

∫
T fdη for f ∈ L1(m) (resp. vζ(f) =

∫
T fdζ

for f ∈ L1(n)) belongs to L1(m)∗ (resp. L1(n)∗) and arguing as in the beginning of the proof
of Lemma 24.1 one can show that uη|K(T ) = θuη ∈ K(T )

∗
b (resp. vζ |K(T ) = θ′vζ ∈ K(T )

∗) and
hence

∫
T ϕdη = uη(ϕ) =

∫
T ϕdμθuη for ϕ ∈ C0(T ) (resp.

∫
T ϕdζ = vζ(ϕ) =

∫
T ϕdμθ′vζ for

ϕ ∈ K(T )). Then by the uniqueness part of the Riesz representation theorem for C0(T ) (resp.
for B(V ) for V ∈ V since δ(C) =

⋃
V ∈V B(V )) we conclude that η = μθuη ( resp. ζ = μθ′vζ )

so that uη(ϕ) =
∫
T ϕdη =

∫
T ϕdμθuη for ϕ ∈ Cc(T ) (resp. vζ(ϕ) =

∫
T ϕdζ =

∫
T ϕdμθ′vζ for

ϕ ∈ Cc(T )). Since (Cc(T ),m•1(∙, T )) (resp. Cc(T ),n
•
1(∙, T )) is dense in L1(m) (resp. L1(n)) by
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Theorem 20.10, we conclude that
∫
T fdη =

∫
T fdμθuη for f ∈ L1(m)(resp.

∫
T fdζ =

∫
T fdμθ′vζ

for f ∈ L1(n)) so that η = Φ(θuη) (resp. ζ = Ψ(θ
′
vζ
)), where we identify θuη with an element of

L1(m)∗ (resp. L1(n)∗) given by θuη(f) =
∫
T fdμθuη for f ∈ L1(m) (resp. θ

′
vζ
(f) =

∫
T fdμθ′vζ

for ∈ L1(n)). Hence Φ (resp. Ψ) is bijective. The remaining parts of (i) are immediate.

(ii) If η ∈ A, then

|||η||| = sup
f∈L1(m),m•1(f,T )≤1

|
∫

T

fdη| ≤ sup
f∈L1(m),m•1(f,T )≤1

∫

T

|f |dv(η,B(T )) ≤ 1

by the definition of A and hence A ⊂ BY . Similarly, |||ζ||| ≤ 1 for ζ ∈ B and hence B ⊂ BZ .

Conversely, let η ∈ BY . Then uη(f) =
∫
T fdη for f ∈ L1(m) and

||uη|| = sup
f∈L1(m),m•1(f,T )≤1

|
∫

T

fdη| ≤ 1.

Then by (24.1.1),
∫
T |f |dv(η,B(T )) ≤ ||uη||m

•
1(f, T ) ≤m

•
1(f, T ) for f ∈ L1(m) and hence η ∈ A.

Therefore, A = BY . Similary, B = BZ .

(iii) By (i), ω•1(f, T ) = supη∈D |
∫
T fdη| ≤ supη∈D

∫
T |f |dv(η,R)) ≤ supη∈D+

∫
T |f |dη ≤

ω•1(f, T ) where ω = m, f ∈ L1(m) and D = BY (resp. ω = n, f ∈ L1(n) and D = BZ). Hence
(iii) holds.

Remark 24.3. If |α(ϕ)| ≤Mμ•(|ϕ|) for ϕ ∈ K(T ), then in the proof of Proposition 4.2 of [T]
it is claimed that α• ≤Mμ•. This result requires a proof and is not immediate from the results
developed in [T]. Hence there is a laguna in the proof of the said proposition.

Using Theorem 24.2, we now give the vector measure analogues of Theorem 4.1 of [T].

Theorem 24.4. Let X be a Banach space (resp. a quasicomplete lcHs). Let m : B(T )→ X

(resp. n : δ(C) → X) be σ-additive and B(T )-regular (resp. and δ(C)-regular). Let (fα)α∈(D,≥)
be an increasing net of non negative lower semicontinuous m-integrable (resp. n-integrable) func-
tions with f = supα fα also being m-integrable (resp. n-integrable) in T . Then fα → f in L1(m)
(resp. L1(n)) and consequently, limα

∫
T fαdm =

∫
T fdm (resp. limα

∫
T fαdn =

∫
T fdn) in X.

Proof. Case 1. X is a Banach space.

Then by Alaoglu’s theorem, BY and B
+
Y (resp. BZ and B

+
Z ) are compact in σ(BY ,L1(m))

(resp. in σ(BZ ,L1(n)), where Y, Z, BY , B
+
Y , BZ and B

+
Z are as in Theorem 24.2. Then, for

η ∈ B+Y (resp. ζ ∈ B+Z ), by Theorem 5.3 of [P2] there exists θ ∈ Kb(T )∗ with θ ≥ 0 such
that μθ|B(T ) = η (resp. by Theorem 4.4 of [P2] there exists θ′ ∈ K(T )∗ with θ′ ≥ 0 such that
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μθ′ |δ(C) = ζ). Then by Theorem 1, no.1, § 1, Ch. IV of [B],

∫

T

fdη = sup
α

∫

T

fαdη = lim
α

∫

T

fαdη

(resp.
∫

T

fdζ = sup
α

∫

T

fαdζ = lim
α

∫

T

fαdζ).

As f and fα, α ∈ (D,≥), belong to L1(m) (resp. L1(n)), the mappings η →
∫
T fdη and

η →
∫
T fαdη (resp. ζ →

∫
T fdζ and ζ →

∫
T fαdζ) are continuous in σ(B

+
Y ,L1(m)) (resp. in

σ(B+Z ,L1(n)). Consequently, by Dini’s lemma, the limit is uniform with respect to η ∈ B
+
Y (resp.

ζ ∈ B+Z ). Then by (iii) of Theorem 24.2 we have

lim
α
m•1(f − fα, T ) = limα

sup
η∈B+Y

∫

T

|f − fα|dη = 0

and hence by (5.3.1) of [P9] we have limα
∫
T fαdm =

∫
T fdm. Similarly, the results for n are

proved.

Case 2. X is a quasicomplete lcHs.

By Theorem 15.13(i) of [P10], L1(m) =
⋂
q∈Γ L1(mq). Then by case 1, (mq)

•
1(fα− f, T )→ 0

for q ∈ Γ and hence fα → f in L1(m). Consequently, by (13.2.1) and Remark 12.5 of [P10],∫
T fαdm→

∫
T fdm as α→∞. Similarly, the results for n are proved.

Lemma 24.5. Let X be a Banach space. Let m : B(T ) → X (resp. n : δ(C) → X) be
σ-additive and Borel regular (resp. and δ(C)-regular). Let R = B(T ) or δ(C) and let ω = m
when R=B(T ) and ω = n when R=δ(C). If η ∈ L1(ω)∗, then, for each bounded Borel function
g on T , g ∙ η given by

(g ∙ η)(f) =
∫

T

fgdη for f ∈ L1(ω)

is well defined and belongs to L1(ω)∗.

Proof. Let f ∈ L1(m). Then there exist A,N,M such that N(f) = A ∪N, A ∈ B(T ), N ⊂
M ∈ B(T ) with ||m||(M) = 0. Let B = A ∪M . Then N(f) ⊂ B ∈ B(T ). If f ∈ L1(n), then by
Lemma 23.7 there exists B ∈ Bc(T ) such that N(f) ⊂ B. By hypothesis, g is a bounded Borel
function (resp. gχB is a bounded σ-Borel function) and hence by Theorem 3.5(vi) and Remark
4.3 of [P8], fgχB ∈ L1(ω) and hence

(g ∙ η)(f) =
∫

T

fgdη =

∫

T

fgχBdη

is well defined and g ∙ η is a linear functional on L1(ω). Let uη(f) =
∫
T fdη for f ∈ L1(ω) and

η ∈ L1(ω)∗. Then by Lemma 24.1 we have

|(g ∙ η)(f)| ≤ ||gχB||T

∫

T

|f |dv(η,R) ≤ ||g||T ||uη||ω
•
1(f, T ).
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Hence g ∙ η ∈ L1(ω)∗.

The following lemmas, which are the same as or similar to Lemmas 23.9, 23.10 and 23.11, are
needed to prove the vector measure analogues of Proposition 5.9 of [T].

Lemma 24.6. Let R and ω be as in Lemma 24.5. If (fn)∞1 ⊂ L1(ω), there exists a sequence
(Kn)

∞
1 ⊂ C such that each fn vanishes ω-a.e. in T\

⋃∞
1 Kk.

Proof. If R = δ(C) and ω = n, then the result holds by Lemma 23.9. If R = B(T ) and
ω = m, then by the proof Lemma 24.5 there exist (Bn)∞1 ⊂ B(T ) such that N(fn) ⊂ Bn for
each n. Let B =

⋃∞
1 Bn. Then

⋃∞
1 N(fn) ⊂ B ∈ B(T ). Then by Theorem 21.1, there exists

a sequence (Kn)
∞
1 ⊂ C such that

⋃∞
1 Kn ⊂ B and ||m||(B\

⋃∞
1 Kn) = 0. Since fn|T\B = 0 for

each n, it follows that fn = 0 m-a.e. in T\
⋃∞
1 Kn.

Lemma 24.7. Let X, R, and ω be as in Lemma 24.5 and let H = {x∗ ∈ X∗ : |x∗| ≤ 1}.
Given a sequence (Kn)

∞
1 ⊂ C, there exists a sequence (x

∗
n)
∞
1 ⊂ H such that every set A ∈ σ(R)

with A ⊂
⋃∞
1 Kn is ω-null whenever A is (x∗n ◦ ω)-null for each n ∈ NI.

Proof. For each n, A∩Kn ∈ δ(C) by Lemma 18.2 of [P11] whenever A ∈ B(T ) or A ∈ Bc(T ).
Hence the proof of Lemma 23.10 holds here verbatim in both the cases of ω. Hence the lemma
holds.

Lemma 24.8. Let R = B(T ) or δ(C). Let μk : R → KI, k ∈ NI be σ-additive and R-regular
and let (fn)∞1 ⊂

⋂∞
k=1 L1(μk). Suppose (fn)

∞
1 converges weakly to some hk ∈ L1(μk) for each

k. Then there exists a sequence (gn)∞1 such that gn is a convex combination of (fk)k≥n and such
that (gn)∞1 converges in mean in L1(μk) and also converges pointwise μk-a.e. in T for each k ∈ NI.

Proof. The proof of Lemma 23.11 holds here verbatim.

The following theorem gives the vector measure analogues of Proposition 5.9 of [T].

Theorem 24.9. Let X be a Banach space with c0 6⊂ X and let m : B(T )→ X be σ-additive
and Borel regular (resp. n : δ(C) → X be σ-additive and δ(C)-regular). Then L1(m) (resp.
L1(n)) is a weakly sequentially complete Banach space.

Proof. In the light of Theorem 6.8 and Notation 7.6 of [P9], L1(m) (resp. L1(n)) is a Banach
space. To show that these spaces are weakly sequentially complete, let (fn)∞1 be weakly Cauchy in
L1(ω), where ω and its domain R are as in Lemma 24.5. By Lemma 24.6, there exists (Kn)

∞
1 ⊂ C

such that each fn vanishes ω-a.e. in T\
⋃∞
1 Kk. Let (x∗n)

∞
1 ⊂ H = {x∗ ∈ X∗ : |x∗| ≤ 1} be

chosen as to satisfy the property mentioned in Lemma 24.7 for the sequence (Kn)
∞
1 of compacts.

Let μn = x∗n ◦ ω, n ∈ NI. Then by Theorem 3.5(viii) and Remark 4.3 of [P8], fn ∈
⋂∞
k=1L1(μk)

for each n.



V. Applications to integration in locally compact Hausdorff spaces-Part II 57

Let η ∈ L1(ω)∗. Then by Lemma 24.5, g ∙ η ∈ L1(ω)∗ for each bounded Borel function g.
As (fn)∞1 is weakly Cauchy in L1(ω), and as g ∙ η ∈ L1(ω)∗, (g ∙ η)(fn))∞1 = (

∫
T fngdη)

∞
1 is

Cauchy in KI and hence (fn)∞1 is weakly Cauchy in L1(η) for each η ∈ L1(ω)
∗. As L1(η) is weakly

sequentially complete, there exists fη ∈ L1(η) such that fn → fη weakly in L1(η). On the other
hand, by Theorem 24.2, x∗k ◦ ω = μk ∈ L1(ω)∗ (since x∗ ◦m ∈ L1(ω)∗ for x∗ ∈ X∗ as it is
σ-additive and R-regular and

∫
T |f |dv(x

∗ ◦ω,R) ≤ ||ux∗ ||ω•1(f, T ), where ux∗(f) =
∫
T fd(x

∗ ◦ω)
for f ∈ L1(ω) (see Lemma 24.1)) and taking η = μk in the above arguement, there exists fμk in
L1(μk) such that fn → fμk weakly in L1(μk) for each k ∈ NI. Then by Lemma 24.8 there exists a
sequence (gn)∞1 such that each gn is of the form

gn =

N(n)∑

i=n

α
(n)
i fi, α

(n)
i ≥ 0, and

N(n)∑

i=n

α
(n)
i = 1

and such that (gn)∞1 converges in mean in L1(μk) and also converges μk-a.e. in T for each k ∈ NI.
Then by Lemma 24.7, (gn)∞1 converges ω-a.e. in T . Let f be the ω-a.e. pointwise limit of (gn)

∞
1 .

As fn → fη weakly in L1(η), gn → fη weakly in L1(η) for each η ∈ L1(ω)∗. Then by Theorem
5.3 (resp. by Theorem 4.4) of [P2] and by Theorem 24.2 there exists θ ∈ K(T )∗ such that η = μθ.
Then clearly

∫
A gndμθ converges to

∫
A fηdμθ for A ∈ B(T ). Then by Theorem 23.6, f = fη for

each η ∈ L1(ω)∗. Now, for x∗ ∈ X∗, η = x∗ ◦m belongs to L1(ω)∗ by Theorem 24.2 (see the
argument given for μk in the above). Hence f ∈ L1(x∗ ◦ ω) for each x∗ ∈ X∗. As c0 6⊂ X, by
the last part of Theorem 5.8 and by Notation 7.8 of [P9], f ∈ L1(ω). Hence L1(ω) is weakly
sequentially complete.

REFERENCES

[B ] N. Bourbaki, Integration, Chapters I-IV, Herman, Paris, 1965.

[Din ] N. Dinculeanu, Vector Measures, Pergamon Press, Berlin, 1967.

[DL ] N. Dinculeanu and P.W. Lewis, Regularity of Baire measures, Proc. Amer. Math. Soc.,
26, (1970), 92-94.

[DS ] N. Dunford and J.T. Schwartz, Linear Operators, Part I: General Theory, Interscience,
New York, 1957.

[H ] P.R. Halmos, Measure Theory, Van Nostrand, New York, 1950.

[KN ] J.L. Kelley and I. Namioka, Linear Topological Spaces, Van Nostrand, New York, 1963.

[MB ] E.J. McShane and T.A. Botts, Real Analysis, Van Nostrand, Princeton, New Jersey, 1959.

[P1 ] T.V. Panchapagesan, On complex Radon measures I, Czechoslovak Math. J., 42, (1992),
599-612.



58 T.V. Panchapagesan

[P2 ] T.V. Panchapagesan, On complex Radon measures II, Czechoslovak Math. J., 43, (1993),
65-82.

[P3 ] T.V. Panchapagesan, Applications of a theorem of Grothendieck to vector measures, J.
Math. Anal. Appl. 214, (1997), 89-101.

[P4 ] T.V. Panchapagesan, Baire and σ-Borel characterizations of weakly compact sets in M(T ),
Trans. Amer. Math. Soc., 350, (1998), 4839-4847.

[P5 ] T.V. Panchapagesan, Characterizations of weakly compact operators on C0(T ), Trans.
Amer. Math. Soc., 350, (1998), 4849-4867.

[P6 ] T.V. Panchapagesan,Weak compactness of unconditionally convergent operators on C0(T ),
Math. Slovaca, 52, (2002), 57-66.

[P7 ] T.V. Panchapagesan, Positive and complex Radon measures in locally compact Hausdorff
spaces, Chapter 26, Handbook of Measure Theory, Vol II, Elsevier, Amsterdam, (2002),
1055-1090.

[P8 ] T.V. Panchapagesan, The Bartle-Dunford-Schwartz integral, I. Basic properties of the
integral, Preprint.

[P9 ] T.V. Panchapagesan, The Bartle-Dunford-Schwartz integral, II. Lp-spaces, 1 ≤ p ≤ ∞,
Preprint.

[P10 ] T.V. Panchapagesan, The Bartle-Dunford-Schwartz integral, III. Integration with respect
to lcHs-valued measures, Preprint.

[P11 ] T.V. Panchapagesan, The Bartle-Dunford-Schwartz integral, IV. Applications to integra-
tion in locally compact Hausdorff soaces-Part I, communicated for publication.

[P12 ] T.V. Panchapagesan, The Bartle-Dunford-Schwartz integral, VI. Complements to the
Thomas theory of vectorial Radon integration under preparation.

[P13 ] T.V. Panchapagesan, A simple proof of the Borel extension theorem and weak compactness
of operators, Czechoslovak Math. J. 52, (2002), 691-703.

[Ru1 ] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.

[Ru2 ] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.

[Scha ] H.H. Schaefer with M.P. Wolf, Topological Vector Spaces, Springer Verlag, second Ed.,
New York, 1999.

[T ] E. Thomas, L’integration par rapport a une mesure de Radon vectorielle, Ann. Inst.
Fourier (Grenoble), 20. (1970), 55-191.

Departamento de Matemáticas,

Facultad de Ciencias,

Universidad de los Andes, Mérida, Venezuela.

e-mail: panchapa@ula.ve


