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Talat KÖRPINAR and Essin TURHAN

Abstract

In this paper, we study biharmonic curves in the special three-dimensional Kenmotsu
manifold K with η-parallel Ricci tensor. We characterize the biharmonic curves in terms of
their curvature and torsion.
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1 Introduction

Let ϕ : (M, g) −→ (N,h) be a smooth map between Riemannian manifolds with M compact.

Then ϕ is called biharmonic if it is an extremal of the functional

E2 (ϕ) =
1
2

∫

M
|τ (ϕ)|2 vM ,

where τ (ϕ) denotes the tension field of the map ϕ, and vM is the volume form on M [7, 10, 11].

Clearly every harmonic map is biharmonic (see [8] for a background on harmonic maps). If we

set

E1 (ϕ) =
1
2

∫

M
|dϕ|2 vM ,

to be the energy of ϕ, then we recall the first variation formula

∂

∂s
E1 (ϕs) |s=0 = −

∫

M
〈τ (ϕ) , v〉 vM ,

where

v =
∂ϕ

∂s
|s=0 ∈ Γ

(
ϕ−1TN

)
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is an arbitrary variation of ϕ = ϕ0. If v is taken to be in the direction of τ (ϕ), then

∂

∂s
E1 (ϕs) |s=0 = −

∫

M
|τ (ϕ)|2 vM = −E2 (ϕ) .

Now take an arbitrary variation of E2 (ϕ) in the direction w = ∂ϕ
∂t |t=0, we have

∂

∂t
E2 (ϕt) |t=0 = − ∂2

∂s∂t
E1 (ϕs,t) |s,t=0 = −

∫

M
〈Jϕ (τ (ϕ)) , v〉 vM ,

where Jϕ is the Jacobi operator corresponding to the second variation of E1 (ϕ). The Euler–

Lagrange equations for a biharmonic map are therefore given by the negative of the Jacobi

operator acting on the tension field:

τ2 (ϕ) ≡ −Trg (∇ϕ)2 τ (ϕ)− TrgR
N (τ (ϕ) , dϕ) dϕ = 0. (1.1)

Here, our convention for the curvature is

R (X, Y ) Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

and

(∇ϕ)2X,Y v = ∇ϕ
X

(∇ϕ
Y v

)−∇ϕ

∇M
X Y

v

with ∇ϕ representing the connection in the pull-back bundle ϕ−1 (TN) and ∇M the Levi-Civita

connection on M. More generally, in the case when M is no longer compact, we call a smooth

map ϕ biharmonic if it satisfies (1.1).

In general, the fourth-order equation (1.1) is difficult to solve. Natural candidates for solutions

are submanifolds of parallel mean curvature, see [10, 11]; or submanifolds with harmonic mean

curvature, see [5, 6, 9]. In [1, 2], examples of biharmonic nonminimal submanifolds of spheres are

given, as well as a complete classification of biharmonic curves in a sphere. Biharmonic curves

on a surface are studied in [3]. We adopt a different approach here to construct biharmonic,

nonharmonic maps.

Recently, there has been a growing interest in the theory of biharmonic maps which can be

divided in two main research directions. On the one side, constructing the examples and classifi-

cation results have become important from the differential geometric aspect. The other side is the

analytic aspect from the point of view of partial differential equations [2, 12, 15, 20, 21], because

biharmonic maps are solutions of a fourth order strongly elliptic semilinear PDE. In differen-

tial geometry, harmonic maps, candidate minimisers of the Dirichlet energy, can be described as



16 Talat KÖRPINAR and Essin TURHAN

constraining a rubber sheet to fit on a marble manifold in a position of elastica equilibrium, i.e.

without tension [7]. However, when this scheme falls through, and it can, as corroborated by the

case of the two-torus and the two-sphere [8], a best map will minimise this failure, measured by

the total tension, called bienergy. In the more geometrically meaningful context of immersions,

the fact that the tension field is normal to the image submanifold, suggests that the most effective

deformations must be sought in the normal direction.

In this paper, we study biharmonic curves in the special three-dimensional Kenmotsu manifold

K with η-parallel ricci tensor. We characterize the biharmonic curves in terms of their curvature

and torsion.

2 Preliminaries

Let M2n+1 (φ, ξ, η, g) be an almost contact Riemannian manifold with 1-form η, the associated

vector field ξ, (1, 1)-tensor field φ and the associated Riemannian metric g. It is well known that

[1]

φξ = 0, η (ξ) = 1, η (φX) = 0, (2.1)

φ2 (X) = −X + η (X) ξ, (2.2)

g (X, ξ) = η (X) , (2.3)

g (φX, φY ) = g (X, Y )− η (X) η (Y ) , (2.4)

for any vector fields X, Y on M . Moreover,

(∇Xφ) Y = −η (Y ) φ (X)− g (X,φY ) ξ, X, Y ∈ χ (M) , (2.5)

∇Xξ = X − η (X) ξ, (2.6)

where∇ denotes the Riemannian connection of g, then (M, φ, ξ, η, g) is called an almost Kenmotsu

manifold [1].

In Kenmotsu manifolds the following relations hold [1]:

(∇Xη) Y = g (φX, φY ) (2.7)
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η (R (X,Y ) Z) = η (Y ) g (X, Z)− η (X) g (Y, Z) (2.8)

R (X, Y ) ξ = η (X) Y − η (Y ) X (2.9)

R (ξ, X) Y = η (Y ) X − g (X, Y ) ξ (2.10)

R (ξ, X) ξ = X − η (X) ξ (2.11)

S (φX, φY ) = S (X, Y ) + 2nη (X) η (Y ) (2.12)

S (X, ξ) = −2nη (X) (2.13)

(∇XR) (X,Y ) ξ = g (Z, X) Y − g (Z, Y ) X −R (X,Y ) Z (2.14)

where R is the Riemannian curvature tensor and S is the Ricci tensor. In a Riemannian manifold

we also have

g (R (W,X) Y, Z) + g (R (W,X) Z, Y ) = 0, (2.15)

for every vector fields X, Y, Z.

3 Special Three-Dimensional Kenmotsu Manifold K with η-Parallel
Ricci Tensor

Definition 3.1. The Ricci tensor S of a Kenmotsu manifold is called η-parallel if it satisfies

(∇XS) (φY, φZ) = 0.
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We consider the three-dimensional manifold

K =
{(

x1, x2, x3
) ∈ R3 :

(
x1, x2, x3

) 6= (0, 0, 0)
}

,

where
(
x1, x2, x3

)
are the standard coordinates in R3. The vector fields

e1 = x3 ∂

∂x1
, e2 = x3 ∂

∂x2
, e3 = −x3 ∂

∂x3
(3.1)

are linearly independent at each point of K. Let g be the Riemannian metric defined by

g (e1, e1) = g (e2, e2) = g (e3, e3) = 1,
g (e1, e2) = g (e2, e3) = g (e1, e3) = 0.

(3.2)

The characterising properties of χ(K) are the following commutation relations:

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2. (3.3)

Let η be the 1-form defined by

η(Z) = g(Z, e3) for any Z ∈ χ(M)

Let be the (1,1) tensor field defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.

Then using the linearity of and g we have

η(e3) = 1, (3.4)

φ2(Z) = −Z + η(Z)e3, (3.5)

g (φZ, φW ) = g (Z, W )− η(Z)η(W ), (3.6)

for any Z,W ∈ χ(M). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost contact metric structure on

M.

The Riemannian connection ∇ of the metric g is given by

2g (∇XY, Z) = Xg (Y, Z) + Y g (Z, X)− Zg (X,Y )

−g (X, [Y, Z])− g (Y, [X, Z]) + g (Z, [X,Y ]) ,
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which is known as Koszul’s formula.

Koszul’s formula yields

∇e1e1 = 0, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = 0, ∇e2e3 = e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

(3.7)

Moreover we put

Rijk = R(ei, ej)ek, Rijkl = R(ei, ej , ek, el),

where the indices i, j, k and l take the values 1, 2 and 3.

R121 = 0, R131 = R232 = e3

and

R1212 = 0, R1313 = R2323 = 1. (3.8)

4 Biharmonic Curves in the Special Three-Dimensional Kenmotsu
Manifold K with η-Parallel Ricci Tensor

Biharmonic equation for the curve γ reduces to

∇3
TT−R (T,∇TT)T = 0, (4.1)

that is, γ is called a biharmonic curve if it is a solution of the equation (4.1).

Let us consider biharmonicity of curves in the special three-dimensional Kenmotsu manifold

K with η-parallel ricci tensor. Let {T,N,B} be the Frenet frame field along γ. Then, the Frenet

frame satisfies the following Frenet–Serret equations:

∇TT = κN,
∇TN = −κT + τB,
∇TB = −τN,

(4.2)

where κ = |T (γ)| = |∇TT| is the curvature of γ and τ its torsion and

g (T,T) = 1, g (N,N) = 1, g (B,B) = 1,

g (T,N) = g (T,B) = g (N,B) = 0.
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With respect to the orthonormal basis {e1, e2, e3} we can write

T = T1e1 + T2e2 + T3e3,
N = N1e1 + N2e2 + N3e3,
B = T×N = B1e1 + B2e2 + B3e3.

(4.3)

Theorem 4.1. γ : I −→ K is a biharmonic curve if and only if

κ = constant 6= 0,
κ2 + τ2 = 1−B2

3 ,
τ ′ = N3B3.

(4.4)

Proof. Using (4.1) and Frenet formulas (4.2), we have (4.4).

Theorem 4.2. Let γ : I −→ K be a non-geodesic curve on the special three-dimensional

Kenmotsu manifold K with η-parallel ricci tensor parametrized by arc length. If κ is constant

and N3B3 6= 0, then γ is not biharmonic.

Proof. Using Frenet formulas (4.2) and ∇TB, we have

B′
3 = −τN3. (4.5)

Assume now that γ is biharmonic. Then, using τ ′ = N3B3 6= 0 and from (4.4), we obtain

ττ ′ = −B3B
′
3,

and

τN3B3 = B3B
′
3 . (4.6)

Substituting B′
3 in equation (4.5), we find

τ = 0. (4.7)

Therefore, τ is constant and we have a contradiction.

Theorem 4.3. Let γ : I −→ K be a unit speed non-geodesic curve with constant curvature.

Then, the parametric equations of γ are
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x1 (s) = C2 − C1 sin3 ϕ

κ2
e− cos ϕs(

√
− cos2 ϕ +

κ2

sin2 ϕ
cos

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]

− cosϕ sin

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]
),

x2 (s) = C3 − C1 sin3 ϕ

κ2
e− cos ϕs(− cosϕ cos

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]

+

√
− cos2 ϕ +

κ2

sin2 ϕ
sin

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]
),

x3 (s) = C1e
− cos ϕs,

(4.8)

where C, C1, C2, C3 are constants of integration.

Proof. Since γ is biharmonic, γ is a helix. So, without loss of generality, we take the axis of

γ is parallel to the vector e3. Then,

g (T, e3) = T3 = cosϕ, (4.9)

where ϕ is constant angle.

The tangent vector can be written in the following form

T = T1e1 + T2e2 + T3e3. (4.10)

On the other hand the tangent vector T is a unit vector, so the following condition is satisfied

T 2
1 + T 2

2 = 1− cos2 ϕ. (4.11)

Noting that cos2 ϕ + sin2 ϕ = 1, we have

T 2
1 + T 2

2 = sin2 ϕ. (4.12)

The general solution of (4.12) can be written in the following form

T1 = sinϕ sinµ,
T2 = sinϕ cosµ,

(4.13)

where µ is an arbitrary function of s.



22 Talat KÖRPINAR and Essin TURHAN

So, substituting the components T1, T2 and T3 in the equation (4.10), we have the following

equation

T = sin ϕ sinµe1 + sin ϕ cosµe2 + cosϕe3. (4.14)

Since |∇TT| = κ, we obtain

µ =

√
− cos2 ϕ +

κ2

sin2 ϕ
s + C, (4.15)

where C ∈ R.
Thus (4.14) and (4.15), imply

T = sin ϕ sin
[√

− cos2 ϕ + κ2

sin2 ϕ
s + C

]
e1

+ sinϕ cos
[√

− cos2 ϕ + κ2

sin2 ϕ
s + C

]
e2 + cos ϕe3.

(4.16)

Using (3.1) in (4.16), we obtain

T = (x3 sinϕ sin
[√

− cos2 ϕ + κ2

sin2 ϕ
s + C

]
, x3 sinϕ cos

[√
− cos2 ϕ + κ2

sin2 ϕ
s + C

]
,

−x3 cosϕ).

(4.17)

From third component of T, we have

dx3

ds
= −x3 cosϕ.

x3 (s) = C1e
− cos ϕs

By direct calculations we have

dx1

ds
= C1 sinϕe− cos ϕs sin

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]
, (4.18)

dx2

ds
= C1 sinϕe− cos ϕs cos

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]
. (4.19)

Moreover, (4.18) and (4.19) imply

x1 (s) = C2 − C1 sin3 ϕ

κ2
e− cos ϕs(

√
− cos2 ϕ +

κ2

sin2 ϕ
cos

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]

− cosϕ sin

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]
),

(4.20)
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and

x2 (s) = C3 − C1 sin3 ϕ

κ2
e− cos ϕs(− cosϕ cos

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]

+

√
− cos2 ϕ +

κ2

sin2 ϕ
sin

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]
),

(4.21)

which proves our assertion.
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