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Abstract

In this paper, we study evolute curve of biharmonic curve in the special three-dimensional
¢—Ricci symmetric para-Sasakian manifold P. We characterize evolute curve of biharmonic
curve in terms of curvature and torsion of biharmonic curve in the special three-dimensional
¢—Ricci symmetric para-Sasakian manifold P. Finally, we find out explicit parametric equa-
tions of evolute curve of biharmonic curve.
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1 Introduction

In a different setting, Chen [5] defined biharmonic submanifolds M C E” of the Euclidean space as
those with harmonic mean curvature vector field, that is AH = 0; where is the rough Laplacian,

and stated the following

Conjecture: Any biharmonic submanifold of the Euclidean space is harmonic, that is mini-

mal.

If the definition of biharmonic maps is applied to Riemannian immersions into Euclidean

space, the notion of Chen’s biharmonic submanifold is obtained, so the two definitions agree.

The non-existence theorems for the case of non-positive sectional curvature codomains, as

well as the

Generalized Chen’s conjecture: Biharmonic submanifolds of a manifold N with Riem <
0 are minimal, encouraged the study of proper biharmonic submanifolds, that is submanifolds
such that the inclusion map is a biharmonic map, in spheres or another non-negatively curved

spaces |1, 2, 3, 5, 10].
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A smooth map ¢ : N — M is said to be biharmonic if it is a critical point of the bienergy
functional:

B2(¢) = [ 5IT(@) du,

where T (¢) := trV?d¢ is the tension field of ¢

The Euler-Lagrange equation of the bienergy is given by 73(¢) = 0. Here the section 72(¢)
is defined by

T2(¢) = —AsT () + trR(7(¢), dp) do, (1.1)

and called the bitension field of ¢. Non-harmonic biharmonic maps are called proper biharmonic
maps.

In this paper, we study evolute curve of biharmonic curve in the special three-dimensional
¢—Ricci symmetric para-Sasakian manifold P. We characterize evolute curve of biharmonic curve
in terms of curvature and torsion of biharmonic curve in the special three-dimensional ¢—Ricci
symmetric para-Sasakian manifold P. Finally, we find out explicit parametric equations of evolute

curve of biharmonic curve.

2 Special Three-Dimensional ¢—Ricci Symmetric Para-Sasakian
Manifold P

An n-dimensional differentiable manifold M is said to admit an almost para-contact Riemannian
structure (¢, &, 1, g), where ¢ is a (1,1) tensor field, £ is a vector field, n is a 1-form and g is a

Riemannian metric on M such that

¢ (X) =X — n(X)¢, (2.2)
9(0X,0Y) =g (X,Y) —n(X)n(Y), (2.3)

for any vector fields X, Y on M [1].

Definition 2.1. A para-Sasakian manifold M is said to be locally ¢-symmetric if
¢* (VwR) (X,Y) Z) =0,

for all vector fields X,Y, Z, W orthogonal to £ [1].
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Definition 2.2. A para-Sasakian manifold M is said to be ¢-symmetric if
¢* (VwR) (X.Y)Z) =0,

for all vector fields X,Y, Z, W on M.

Definition 2.3. A para-Sasakian manifold M is said to be ¢-Ricci symmetric if the Ricci

operator satisfies

¢* (VxQ)(Y)) =0,

for all vector fields X and ¥ on M and S(X,Y) = ¢g(QX,Y).

If X,Y are orthogonal to &, then the manifold is said to be locally ¢-Ricci symmetric.

We consider the three-dimensional manifold

P:{(xl,xz,x3) eR3: (ml,:L'Q,x?’) + (0,0,0)},

where (ml, z2, :US) are the standard coordinates in R?. We choose the vector fields
10 1 (0 0 0
eL=¢ ga e=¢ (w‘w) P (24)

are linearly independent at each point of P. Let g be the Riemannian metric defined by

g(ei,e1) =g(e,e2) = g(es e3) =1, (2.5)
g(e1,e2) = g(ez,e3) = g(e1,e3) = 0.
Let 1 be the 1-form defined by
1(Z) = g(Z, e3) for any Z € x(P).
Let be the (1,1) tensor field defined by
p(e1) = ez, ¢(e2) = e, ¢(e3) =0. (2.6)
Then using the linearity of and g we have
nles) =1, (2.7)

¢*(Z) = Z — n(Z)es, (2.8)
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9(9Z,oW) = g(Z, W) —n(Z)n(W), (2.9)

for any Z,W € x(P). Thus for e3 = &, (¢,&, 7, g) defines an almost para-contact metric structure

on P.

Let V be the Levi-Civita connection with respect to g. Then, we have

[e1,e5] =0, [e1,e3] =e1, [e2,e3] =eo.

The Riemannian connection V of the metric g is given by

29(VxY,Z) = Xg(Y,2)+Yg(Z,X)—-Zg(X,Y)
-9 (X, [V, Z]) =g (Y, [X,Z]) + g(Z,[X,Y]),

which is known as Koszul’s formula.
Taking e3 = £ and using the Koszul’s formula, we obtain
Vele1 = —es, Ve1e2 = 0, Veleg =€y, (2.10)

vegel — 07 VegeQ — _e37 v62e3 — 82
Ve3e1 = 0, VeSGQ = 0, Ve3e3 =0.

)

Moreover we put
Rijx = R(e;,ej)er, R = R(ei, e, ey, e),
where the indices ¢, j, k and [ take the values 1,2 and 3.
Ri22 = —eq,, Ri33 = —e1, Ro33 = —ey,
and

Ri212 = Ri313 = Razoz = 1. (2.11)

3 Biharmonic Curves in the Special Three-Dimensional ¢—Ricci
Symmetric Para-Sasakian Manifold P

Biharmonic equation for the curve  reduces to
V3T - R(T,VtT)T =0, (3.1)

that is, v is called a biharmonic curve if it is a solution of the equation (3.1).
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Let us consider biharmonicity of curves in the special three-dimensional ¢—Ricci symmetric
para-Sasakian manifold P. Let {T,N,B} be the Frenet frame field along . Then, the Frenet

frame satisfies the following Frenet—Serret equations:

VT = sN, (3.2)
VN = —kT + 7B,
VB = —7N,

where & is the curvature of v and 7 its torsion and

g(T,T) = 179(N7N):179(B7B):17
g(T,N) = ¢(T,B)=g(N,B)=0.

With respect to the orthonormal basis {e1, e, €3}, we can write

T =Tie; + Tres + Tses, (33)
N = Nie; + Naez + Nzes,
B =T x N = Bie; + Byey + Bges.254

Theorem 3.1. v : I — P is a biharmonic curve if and only if

k = constant # 0, (3.4)
k24712 =1,
T = constant.

Proof. Using (3.1) and Frenet formulas (3.2), we have (3.4).

Theorem 3.2. All of biharmonic curves in the special three-dimensional ¢p— Ricci symmetric

para-Sasakian manifold P are helices.

4 Evolute Curve of Biharmonic Curve in the Special Three-Dimensional
¢—Ricci Symmetric Para-Sasakian Manifold P

Definition 4.1. Let unit speed curve v : I — P and the curve 3 : I — P be given. For Vs € 1,
the tangent at the point (B(s) to the curve [ passes through the tangent at the point y(s) and

g(T*(s),T(s)) =0. (4.1)

Then, (8 is called the evolute of the curve ~.
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Let the Frenet-Serret frames of the curves v and § be {T,N,B} and {T*, N*, B*}, respec-
tively.

Theorem 4.2. Let v : I — P be a unit speed biharmonic curve and [ its evolute curve on
P. Then, the parametric equations of 3 are

. 9
S11n — —
5 (’032 +Cis+C9)

1 sin2 - -
+— tan (75 + ¢) sin e~ * 3P+ (sin [ks + C] 4 cos [ks + C) e 2 52 +C15+02
K
. (=ksin ¢ cos |ks + C| + cos ¢ sin v sin [ks + C'
( @ psingp
_sin® o

1 — —
—— tan (7s + () sin pe™* " #+Cisin[ks + Cle™ 2 82+Cls+c2((k sin p sin [ks + C]
K

+ cos @ sin ¢ cos [ks + C]) + (—ksin ¢ cos [ks + C| + cos ¢ sin psin [ks + C])) + C1,

mk (s) = —scosp + ,712(—

23 (s) = —— e’ $+C1([k + cos ¢] cos [ks 4 O] + [~k + cos ¢] sin [ks + C])

n _ _
- i s24-C15+C2

1
+—e 2 (ksin ¢ sin [ks + C] + cos psin p cos [ks + C])
K
sin2<p _
1 - s24+C15+C> . . .
e 2 (=ksin g cos [ks + C] + cos ¢ sin g sin [ks + C])
1 in” — =
—— tan (75 + () (—Ms2 + C15 + C3) sin pe=* 5% +C1 gin [ks + C]

sin? Val Vol
+— tan (75 4 () cos pe ™ 2 #5*+C1s+C2 (K sin ¢ cos [ks + C] + cos psin gsin [ks + C]) + Cs,
K

3
3 (s) = —%e‘“os $+C1(— cos ¢ cos [ks + C] + [ks + O] sin [ks + C])
_sin2<p 2

——e 2 ¢ +C15+0> (—ksin ¢ cos [ks + C] + cos ¢ sin g sin [ks + C])

sin? Val Vol
+— tan (75 + () cospe™ 2 g05%015‘*'02((]1{ sin ¢ sin [ks + C] + cos @ sin ¢ cos [ks + C])
K
+ (—ksin ¢ cos [ks + C] + cos psin psin [ks 4+ C1))
sin? ¢
(-2

5 +618+62)+03,

(4.2)

1
+— tan (75 + () sin e $+C1 (sin [ks + C] + cos [ks + C])
K

v/ k2—sin? @

where C, Cy, Csy, C1, Cy, C3 are constants of integration and k = S

Proof. Since v is biharmonic, v is a helix. So, without loss of generality, we take the axis of

v is parallel to the vector e3. Then,
9(T,es) =T5 = cos g, (4.3)

where ¢ is constant angle.
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The tangent of the curve (3 at the point (3(s) is the line constructed by the vector T*(s) .

The curve (3(s) may be given as
B(5) = 7(s) + AN (5) + 4B (s) . (4.4)
If we take the derivative (4.4), then we have
B'(s) =(1—=A&)T(s)+ (N —pur) N (s) + (AT + /) B(s). (4.5)
Since the curve g is evolute of the curve v, g (T* (s), T (s)) = 0. Then, we get
1
A= - (4.6)
Using (4.5) and (4.6), we have

B'(s)=(N—pr)N(s)+ (M +u)B(s). (4.7)

From the (4.4) and (4.7), the vector field 3’ is parallel to the vector field 3 — v . Then, we

have
pN = '\ AN
T=—— = [arctan (——)} = constant.
pu? 4+ A2 A
If we take the integral the last equation, we get
kY _
arctan <_X> =75+, (4.8)
where ( is a constant of integration.
From (4.8), we obtain
1
,uz—;tan(Ts—FC). (4.9)

The tangent vector can be written in the following form

T =Tieq + Thes + T3e3. (410)

On the other hand the tangent vector T is a unit vector, so the following condition is satisfied

TE+T5 =1 —cos? . (4.11)
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Noting that cos? ¢ + sin? ¢ = 1, we have
T? + T3 = sin? .
The general solution of (4.12) can be written in the following form

Ty = sinycos u,
T5 = sin psin p,

where p is an arbitrary function of s.

(4.12)

(4.13)

So, substituting the components 71, T» and T3 in the equation (4.7), we have the following

equation
T = sin ¢ cos pue; + sin @ sin peg + cos pes.

Since |V1T| = K, we obtain

where C € R.

Thus (4.14) and (4.15), imply

T = sin g cos [ks + C] e1 + sin psin [ks + C] ez + cos pes,

k2—sin? @

where k = sno

Using (2.4) in above equation, we obtain

T = (— cos p, sin pe® (sin [ks + C] + cos [ks + C1]) , sin pe® sin ks + C1).

From third component of T, we have

dz’ cos

>V = = ®,

ds

dwz : —scos p+C :

—y = sinpe #71 (sin ks + C] + cos ks + C]) ,
s

daz?

- = O sin e ™* 5 ?+C1 ¢os [ks + O] .
s

(4.14)

(4.15)

(4.16)
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By direct calculations, we have

x! (s) = —scosp + C, (4.17)
9 sin3<p _ C
2 (s) = Oy — ———5—e "+ ([k + cos ¢ cos [ks + C]
k2 —sin® p
+ [~k + cos ¢] sin [ks + C1),
3 sinp +C
2°(s) = O3 — 57—y e *®¥T1(—cospcos [ks + C]
K% —sin® ¢
+ [ks + C]sin [ks + C]),

where C1, Cy, C3 are constants of integration.

Using (4.10), we have

VT = (T] + ThT3) e1 + (T + ToTs) es + (T4 — (TF — T3)) es. (4.18)

From (3.1) and (5.11), we get

VT = sing (—ksin [ks + C| 4+ cos ¢ cos [ks + C]) eq (4.19)
+sin g (kcos[s + C] + cos psin [ks + C]) ez
—sin? pes,

\/ k2—sin? @

where k = :
sin ¢

We substitute (4.9) and (4.6) into (4.4), we get

B(s) = (s) + %N (s) %tan (75 + ) B (s). (4.20)

By the use of Frenet formulas (4.2), we get

N = 1vpT (4.21)
K

1
[(ksin ¢sin [ks 4+ C] + cos ¢ sin ¢ cos [ks + C]) e1

K

+ (—ksin ¢ cos [ks + C] + cos psin psin [ks + C]) ey

— sin? pes].

Substituting (2.4) in (4.21), we have

1, sin? e
N = f(—s‘lnT@s? +Cys+ Cy. (4.22)

K
sin2 al al
e~ Tr s +C1s+02 (ksin ¢ sin [ks + C] + cos g sin p cos [ks + C])
sin? ral Vol
tem T2 01502 (K gin o cos [ks + C] + cos psin psin [ks + C))
2

o 25?4+ C1s+ 0 (—ksin g cos [ks + C] + cos psin ¢ sin [ks + C]))
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where C1, Cy are constants of integration.

T = (—cos p, sin goe"’“"l (sin [ks + C] + cos [ks + C1]) , sin goewl sin [ks + C1). (4.23)

Noting that T x N = B, we have

1 sin2 = -
B =—(— sin e3¢ (gin [ks + C] + cos [ks + C]) o U2 24 Ty 540
K
. (—ksin ¢ cos [ks + C| + cos g sin psin [ks + C])

sin?

72 s”+C1s+Co ((ksin¢sin [ks + C] + cos psin  cos [ks + C])

— sin e ™55+ gin [ks 4+ Cl e~
+ (=ksin ¢ cos [ks + C] + cos ¢ sin psin [ks + C))

.(—%32 + C15 + C3) sin pe 59 TC1 gin [ks 4 C]

sin? )

—cospe 2 501502 (LK sin o cos [ks + C] + cos @ sin g sin ks + C))

sin2 %)

—cospe™ 7 s HC1s+C2 ((ksingsin [ks + C| 4 cos ¢ sin ¢ cos [ks + C)

+ (—ksin ¢ cos [ks + C] + cos psin ¢sin [ks + C1))

— sin e~ ?+C1 (sin [ks + C] + cos [ks + C]) (—%52 + Cis+ Cy).
(4.24)

Finally, we substitute (4.12), (4.17) and (4.24) into (4.20), we get (4.2). The proof is com-
pleted.

Corollary 4.3. Let v: I — P be a unit speed bitharmonic curve and (3 its evolute curve on

P. Then, the parametric equations of ~y are
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x! (s) = —scosp + C, (4.25)
sin® o
22 (s) = Oy — ﬁe_scos‘ﬁcl ([k + cos ¢] cos [ks + C]
k% —sin® ¢

+ [~k + cos ¢] sin [ks + (1),

.3
23 (s) =C3 — ;Hli.ﬂe*“os‘ﬁcl(— cos ¢ cos [ks + C]
k2 — sin® ¢
+ [ks + CJsin [ks + (),

where C1, Ca, Cs are constants of integration.
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