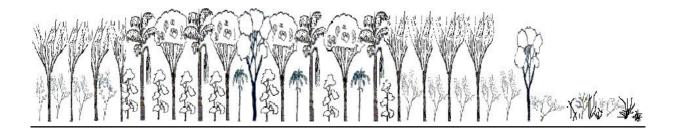

<u>COMUNIDAD</u> = Biocenosis: conjunto de plantas y animales que se encuentran en un lugar determinado (biotopo) interactuando entre sí y con los elementos físicos del lugar.


Reconocimiento de Comunidades:

- 1. Aspectos fisionómicos. Apariencia que presenta la vegetación en cuanto a caducifolía, altura y forma de vida predominante. Varias Comunidades constituyen una Formación.
- 2. Aspectos florísticos. Se utilizan las especies dominantes (las de mayor cobertura que están en el dosel).
- 3. Características del hábitat (banco, sub-banco, bajío).

Pica de Interpretación Ecológica – Reserva Forestal Imataca.

Pica 8 – Estación Experimental Caparo.

MÉTODOS DE ANÁLISIS.

-<u>Delimitación del área de estudio</u>: objetivos, aspectos administrativos, hábitat.

-Diseño del Muestreo:

a. Opinático. Sitios que se consideran representativos. Es subjetivo. Requiere un amplio

conocimiento del área. Perjudica el análisis estadístico.

b. Sistemático. Se aplica un patrón regular en toda la zona de estudio. El punto de arranque

se ubica de manera aleatoria. Permite detectar variaciones espaciales de la vegetación.

Aplicado en transecciones.

c. Aleatorio. Ubicación al azar. Cualquier sitio tiene la misma probabilidad de ser

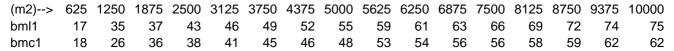
muestreado. Permite estimar un error de muestreo, pero algunos sitios pueden ser muy

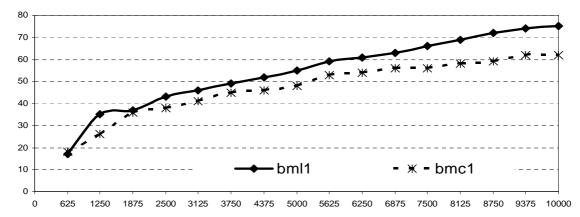
inaccesibles.

d- Estratificado. Se subdivide la zona en "estratos" (áreas) homogéneos y luego se aplica un

muestreo aleatorio o sistemático.

-Tamaño y forma de la unidad de muestreo (parcelas): deben mantenerse durante todo el


estudio. Deben distinguirse claramente en un plano y en el sitio. Las reglas de inclusión y


exclusión de los individuos deben establecerse de antemano. Las parcelas pueden ser

rectangulares, cuadradas y circulares.

-Área Mínima: es el área más pequeña en la cual está representada la composición de especies de la comunidad analizada. Se determina por el Método de la Curva Especies-Área. Se considera que la curva se "estabiliza" cuando un aumento en el 10% de área levantada genera un incremento inferior a 10% en el número de especies.

Ejemplo: Bosques de Cima y Ladera en la Reserva Forestal Imataca.

-Parcelas cuadradas de 1 ha: cubren el área mínima en la mayoría de los ecosistemas venezolanos y han sido ampliamente utilizadas. Son especialmente útiles para hacer mediciones a largo plazo. Desventajas: costos; áreas con alta variabilidad.

-Parcelas rectangulares de 1/10 de ha: generalmente miden 20 x 50 m. Fueron popularizadas por Gentry y actualmente hay una amplia red de estas parcelas en todo el área tropical.

4	5	12	13
3	6	11	14
2	7	10	15
1	8	9	16

1	3	5	7	9
2	4	6	8	10

ANÁLISIS FLORÍSTICO - Aspectos Cuantitativos.

- <u>Abundancia</u>: número de individuos por especies. Muy raro (<5); Raro (5-15); Escaso (15-30); Abundante (30-100); Muy Abundante (> 100).

La Abundancia Absoluta (Ai) es el número de individuos de una especie en una parcela. La Abundancia Relativa (Ai%) es la relación porcentual del número de individuos de la especie con respecto al total de individuos de la parcela. Ai% = (Ai/At) x 100

- Densidad: número de individuos por unidad de área (ha).
- <u>Frecuencia</u>: es la probabilidad de encontrar una especie en una unidad muestral particular. Se determina en parcelas de igual tamaño y forma.

Dentro de una parcela, la frecuencia es una medida de la distribución de una especie y se evalúa de acuerdo a su presencia en sub-parcelas. La Frecuencia Absoluta es (Fi) es la relación porcentual entre el número de sub-parcelas en que aparece una especie (Ni) y el total de sub-parcelas. La Frecuencia Relativa (Fi%) es la relación porcentual entre la frecuencia de la especie y la suma de frecuencia de todas las especies (Ft).

Especie

macroloba

TOTAL

 $Fi = (Ni/N) \times 100$; $Fi\% = (Fi/Ft) \times 100$

macroloba

guianensis

Carapa

(625 m2 c/u)	'	_	O	7
Especie				
Erisma	5	0	1	0
uncinatum				
Alexa	3	10	2	6
imperatricis				
Pentaclethra	6	8	10	4

1

3

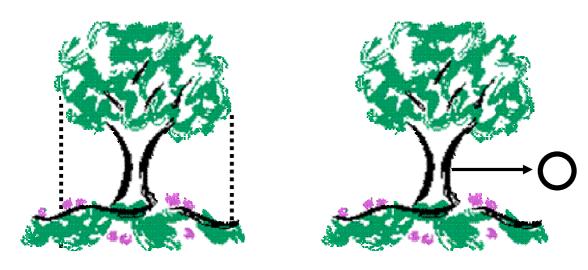
0

2

Ejemplo.

Alexa imperatricis			
Carapa guianensis			
Erisma uncinatum			
Pentaclethra			

Cálculos.


Αi

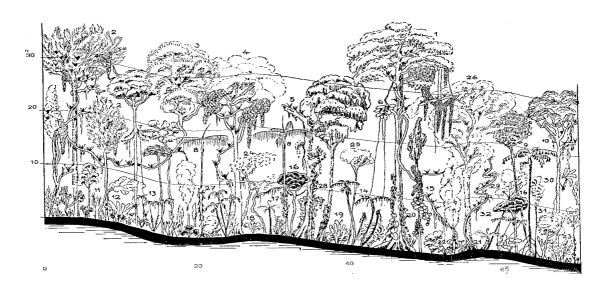
Ai% Ni Fi Fi%

Cobertura: es la proporción de terreno ocupado por la proyección perpendicular de la copa de los individuos considerados. Contínuo (>75%); Interrumpido (50-75%); Dispersa (25-50%); Rala (15-25%); Muy Rala (<15%). Se puede determinar la cobertura de la comunidad, por estrato y por especie. La suma de las dos últimas puede ser >100%.

- Área Basal: es la superficie de una sección transversal del tronco del individuo a la altura del pecho (1.3 m de altura). Es un parámetro muy preciso. No hay solapamiento. Se expresa en m2. $AB = \Pi/4$ (dap)2; $AB = (cap)2 / 4\Pi$. Generalmente se toma el cap (mm); excepcionalmente el dap (cm).

-<u>Dominancia</u>: representa la importancia de una especie en función de su desarrollo o biomasa. En bosques se mide a través del área basal. La Dominancia Absoluta (Di) es la suma de área basal de todos los individuos de una especie. La Dominancia Relativa (Di%) es la relación porcentual entre la dominancia absoluta de una especie con respecto al área basal total de la parcela (Dt). El área basal total es una medida indirecta de la biomasa y de la productividad de un sitio, se expresa en m2/ha. Di = ∑ABi; Di% = (Di/Dt) x 100.

En arbustales y sabanas, la dominancia se aprecia mediante la cobertura.


Ejemplo (parcela de 1000 m²).

ESPECIE	cap (mm)	ab (m ²)
Erisma uncinatum	2278	
Alexa imperatricis	<u>25*</u>	
Pentaclethra macroloba	581	
Carapa guianensis	1533	
Alexa imperatricis	991	
Carapa guianensis	<u>35*</u>	
Alexa imperatricis	1002	
Pentaclethra macroloba	361	

ESPECIE	Di	Di%
Alexa imperatricis		
Carapa guianensis		
Erisma uncinatum		
Pentaclethra		
macroloba		
TOTAL		

ANÁLISIS FLORÍSTICO - Aspectos Cualitativos (organización de los componentes en la comunidad).

-<u>Estrato</u>: es la concentración de la masa vegetal dentro de dos niveles de altura (Ej: superior, medio, inferior). Depende del grado de desarrollo de los individuos y de la competencia por luz. Si no está bien marcada se aplican límites fijos (1: <2m; 2: 2-5 m; 3: 5-10 m; 4: 10-20 m; 5: 20-30 m; 6: >30 m). <u>Dosel</u>: es el estrato más alto con cobertura >25%. <u>Individuos emergentes</u>: sobresalen del dosel, pero su cobertura es <25%.

^{*} dap proyectado en cm

-Sociabilidad: es la forma de distribución de los individuos de una especie. Depende del

hábitat, de la capacidad de competencia y de la forma de reproducción. Escala:

1 Cada individuo crece aislado, en forma aleatoria o dispersa.

2 Grupos pequeños o agregados.

3 Manchas medianas.

4 Manchas grandes disyuntas.

5 Manchas grandes contínuas.

-Vitalidad: es el grado de vigor (desarrollo vegetativo) y de prosperidad (regeneración).

Refleja el éxito de una especie en la comunidad.

i.- Germina ocasionalmente pero no se desarrolla.

ii.- Se mantiene por medios vegetativos pero no completan su ciclo vital.

lii.- Se desarrollan bien y completan regularmente su ciclo vital.

-Fenología: fase del ciclo fisiológico y estacional en que se encuentran los individuos.

P: plántula J: individuo joven A: individuo adulto S: individuo senil

V: estado vegetativo F: floración Fr: fructificación (D: decíduo)

Aspectos Sintéticos.

<u>Índice de Valor de Importancia</u> (Curtis y McIntosh, 1951). IVI = Ai% + Fi% + Di% Ejemplo IVI1 (sub-parcelas de 100 m² en la Reserva Forestal Imataca).

Р	Sp	Num	Nombre Vulgar	cap (mm)	Af (m)	At (m)	Estrato	AB (m²)
ht1	1	1	Guamo Blanco	60*	10	18	S	
ht1	1	2	Rosa de Montaña	352	4	7	I	
ht1	1	3	Cacaíto	357	8	13	M	
ht1	1	4	Clavellino	731	6	9	I	
ht1	2	5	Carapa	55*	14	20	S	
ht1	2	6	Cacaíto	592	9	16	S	
ht1	2	7	Leche de Cochino	412	7	12	M	
ht1	3	8	Cacaíto	519	7	11	M	
ht1	3	9	Clavellino	42*	8	14	M	
ht1	4	10	Carapa	626	7	11	M	
ht1	4	11	Cacaíto	319	4	8	I	
ht1	5	12	Cacaíto	322	6	10	I	
ht1	5	13	Bejuco Melocotón	386	18	18	S	
ht1	6	14	Cacaíto	322	4	6	I	
ht1	7	15	Cacaíto	317	5	9	I	
ht1	7	16	Leche de Cochino	469	6	10	I	
ht1	7	17	Leche de Cochino	734	10	17	S	
ht1	7	18	Clavellino	583	12	16	S	
ht1	8	19	Cacaíto	351	4	7	I	
ht1	8	20	Carapa	45*	10	13	M	
ht1	8	21	Leche de Cochino	318	4	6	I	
ht1	8	22	Clavellino	343	3	5	I	

^{*} dap proyectado en cm

Listado de Especies.

Nombre Vulgar	Nombre Científico	Familia
Leche de Cochino	Alexa imperatricis	Fabaceae
Rosa de Montaña	Brownea latifolia	Fabaceae
Carapa	Carapa guianensis	Meliaceae
Bejuco Melocotón	Cheiloclinium hippocrateoides	Hippocrateaceae
Cacaíto	Eschweilera grata	Lecythidaceae
Guamo Blanco	Inga splendens	Fabaceae
Clavellino	Pentaclethra macroloba	Fabaceae
Molenillo	Rinorea riana	Violaceae

Cálculos.

Especie	Ai	Ai%	Ni	Fi	Fi%	Di	Di%	IVI	IVI%	Rango
TOTAL										
TOTAL (por ha)										

Índice de Valor de Importancia Ampliado (Finol, 1971).

IVIA = Ai% + Fi% + Di% + Psi% + Rni%

Posición Sociológica: Psi% = (Psi x 100) / \sum Psi; Psi = (Asi x VFs) + (Ami x VFm) + (Aii x VFi); s,m,i: estratos superior, medio e inferior.

VFe* = $[(\sum Ai^* \times 100) / At^*] / 10$; * en un estrato determinado. VFe se aproxima sin decimales.

Regeneración Natural: Rni% = (ARni% + FRni% + CTRni%) / 3

ARni% y FRni%: abundancia y frecuencia en regeneración natural, se calcula igual que en el IVI. CTRni%: categoría de tamaño en regeneración natural se calcula igual que en la posición sociológica.

Continuación del Ejemplo IVI1 – Cálculo de Posición Sociológica.

Estrato →	Superior	Medio	Inferior	Total	Ps	Ps%
Alexa imperatricis						
Brownea latifolia						
Carapa guianensis						
Cheiloclinium hippocrateoides						
Eschweilera grata						
Inga splendens						
Pentaclethra macroloba						
TOTAL						
%						
% / 10						
VFe						

Cálculo de E. grata: Ps = $(1 \times 3) + (2 \times 3) + (5 \times 4) \rightarrow Ps = 29$

Datos de Abundancia en Regeneración Natural y Sotobosque (<10 cm dap; 4 subparcelas).

Subparcelas		1			2			3			4	
Categorías de Tamaño	1	2	3	1	2	3	1	2	3	1	2	3
Alexa imperatricis	2	0	1	1	0	1	1	2	4	1	2	4
Brownea latifolia	0	1	1	0	0	0	0	1	3	0	2	4
Carapa guianensis	7	9	9	0	0	0	1	0	0	0	1	0
Cheiloclinium hippocrateoides	0	0	0	0	0	0	0	0	0	0	0	0
Eschweilera grata	24	8	2	19	8	3	27	8	3	24	8	2
Inga splendens	1	0	0	0	0	0	0	0	0	0	0	1
Pentaclethra macroloba	3	1	1	12	5	3	15	2	2	20	2	1
Rinorea riana*	40	20	5	30	12	4	70	20	3	90	10	2

Categorías de Tamaño: 1 (<1 m); 2 (1-3 m); 3 (>3 m). * arbusto.

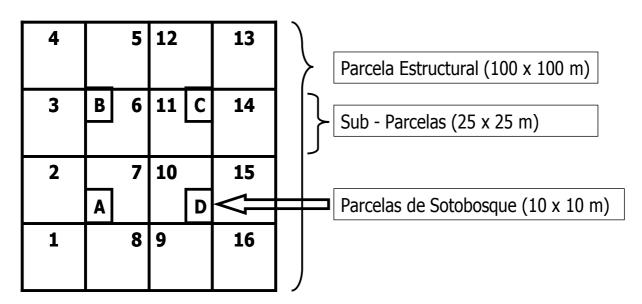
Continuación del Ejemplo IVI1 – Cálculo de Regeneración Natural (especies arbóreas).

Clases de	1	2	3	ARni	ARni	NRn	FRni	FRni	CTRni	CTRni	Rn%
Altura →	(< 1m)	(1-3m)	(>3m)		%			%		%	
Alexa											
imperatricis											
Brownea											
latifolia		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Carapa											
guianensis								<u></u>			
Cheiloclinium											
hippocrateoides											
Eschweilera											
grata											
Inga											
splendens											
Pentaclethra											
macroloba								<u>.</u>			
TOTAL											
%											
% / 10											
VFt											

Cálculo de CTRn en E. grata: CTRn = $(94 \times 6) + (32 \times 2) + (10 \times 2) \rightarrow$ CTRn = 648

Resumen.

Especie	Ai%	Fi%	Di%	IVI	Ra	Ps%	Rn%	IVIA	IVIA%	R_b
Alexa imperatricis										
Brownea latifolia										
Carapa guianensis										
Cheiloclinium hippocrateoides										
Eschweilera grata										
Inga splendens										
Pentaclethra macroloba										
TOTAL										



Índice de Importancia Ampliado (Lozada, 2006).

.- Abundancia en Sotobosque. As% = $(As \times 100)$ / Ast. As: número total de individuos de una especie, encontrados en las sub-parcelas de sotobosque (<10 cm dap).

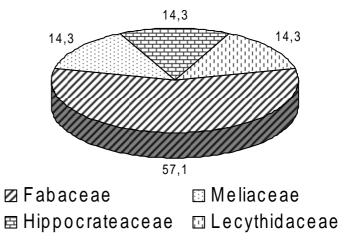
Ast: número de individuos de todas las especies, encontrados en las parcelas de sotobosque.

- .- Frecuencia en Sotobosque. Fs% = (Fs x 100) / Fst; Fs = (Nis/Ns) x 100. Nis: número de parcelas de sotobosque en que aparece una especie. Ns: número total de parcelas de sotobosque. Fst: es la suma de frecuencia en sotobosque de todas las especies.
- .- Método de Levantamiento (en parcelas de 1 ha).

Continuación del Ejemplo IVI1 – Cálculo del Levantamiento en Sotobosque.

	Sub-parcelas			s					
	1	2	3	4	As	As%	Ns	Fs	Fs%
Alexa imperatricis									
Brownea latifolia									
Carapa guianensis									
Cheiloclinium hippocrateoides	<u></u>								
Eschweilera grata									
Inga splendens									
Pentaclethra macroloba									
Rinorea riana									
TOTAL									

Resumen.


Especie	Ai%	Fi%	Di%	IVI	Ra	As%	Fs%	IIA	IIA%	R_b
Alexa imperatricis										
Brownea latifolia										
Carapa guianensis										
Cheiloclinium hippocrateoides										
Eschweilera grata				5						
Inga splendens										
Pentaclethra macroloba										
Rinorea riana										
TOTAL										

Índice de Importancia Familiar.

IIF = (Número de especies en la familia * 100) / Número total de especies

Ejemplo IVI1 (individuos > 10 cm dap).

Familia	No. spp	IIF
Fabaceae	4	57,1
Meliaceae	1	14,3
Hippocrateaceae	1	14,3
Lecythidaceae	1	14,3
TOTAL	7	100,0

Índices de Diversidad.

- .- RIQUEZA: cantidad total de especies en una parcela.
- .- EQUITABILIDAD: distribución de individuos para cada especie.
- .- COCIENTE DE MEZCLA: CM = No. de spp / No. de individuos

CM= 1/1 → máxima diversidad. Cada individuo pertenece a una especie diferente

CM= 1/500 → mínima diversidad. Hay 500 individuos de una sola especie.

Ejemplo.
DIV1

	C1	C2
sp1	40	20
sp2	20	20
sp3	2	22
СМ	3/62 = <u>1/20</u>	3/62 = <u>1/20</u>

- *) Ambas comunidades tienen la misma Riqueza y CM.
- *) La C2 tiene mejor equitabilidad. En realidad es más diversa.

.- ÍNDICE DE MCINTOSH.

$$IM = \left(N - \sqrt{\sum ni^2}\right) / \left(N - \sqrt{N}\right)$$
 N: abundancia total

ni: abundancia por especie

$$IM_1 = (62 - \sqrt{(40^2) + (20^2) + (2^2)})/(62 - \sqrt{62}) = 0,32$$

$$IM_2 = \left(62 - \sqrt{(20^2) + (20^2) + (22^2)}\right) / \left(62 - \sqrt{62}\right) = 0,48$$

.- ÍNDICES DE SHANNON-WIENER.

H´= - [∑pi x Ln(pi)]; pi = No. de individuos de una especie / total de individuos de la parcela H'max = Ln (S) → máximo valor posible de la diversidad. S = número total de especies J = H' / Hmax → equitatividad

			pi	Ln(pi)	pi x Ln(pi)
C1	sp1	40	0,65	-0,43	-0,28
	sp2	20	0,32	-1,14	-0,36
	sp3	2	0,03	-3,51	-0,11
	H′				0,75
	Hmax				1,10
	J				0,68
C2	sp1	20	0,32	-1,14	-0,36
	sp2	20	0,32	-1,14	-0,36
	sp3	22	0,35	-1,05	-0,37
	H′				1,09
	Hmax				1,10
	J				0,99

Índices de Similaridad (Diversidad β).

<u>a</u>: número total de especies en la comunidad A;
 <u>b</u>: número total de especies en la comunidad B
 <u>c</u>: número de especies comunes en ambas comunidades.

.- ÍNDICE DE SØRENSEN MODIFICADO.
$$I_{Sm}=\ 2jN\ /\ (aN+bN)$$

<u>aN</u>: número total de individuos de la comunidad A; <u>bN</u>: número total de individuos de la comunidad B
 <u>jN</u>: suma de las abundancias menores de las especies comunes.

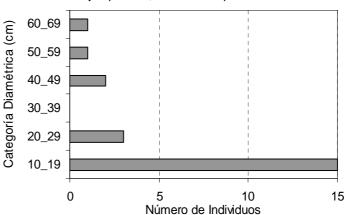
Continuación del ejemplo DIV1.

$I_J = 3 / (3 + 3 - 3)$	$I_S = 2 \times 3 / (3 + 3)$	$I_{Sm} = 2 \times (20 + 20 + 2) / (62 + 62)$
$I_J = 1$	$I_S = 1$	$I_{Sm} = 0.68$

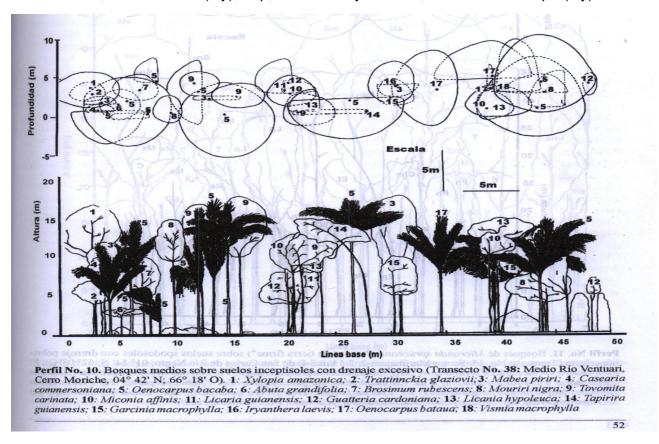
Continuación del ejemplo IVI1 (datos de Regeneración Natural y Sotobosque, página 10).

Sub-Parcela>	1	2	3	4
Alexa imperatricis	3	2	7	7
Brownea latifolia	2	0	4	6
Carapa guianensis	25	0	1	1
Cheiloclinium hippocrateoides	0	0	0	0
Eschweilera grata	34	30	38	34
Inga splendens	1	0	0	1
Pentaclethra macroloba	5	20	19	23
Rinorea riana	65	46	93	102
Total	135	98	162	174

	Índice de Jaccard						
	1	2	3	4			
1	_	0,57					
2	_	_					
3	_	_	_				
4	_	_	_				
	(1_2): 4 / (7 + 4 - 4) = 0.57						


4000000	Índice de Sorensen						
<u></u>	1	2	3	4			
1	_	0,73					
2	<u> </u>						
3	_		_				
4	_	_	_	_			
	(1_2) : 2 x 4 / $(7 + 4)$ = 0,73						

<u> </u>	Índice de Sorensen Modificado						
	1	2	3	4			
1	_	0,71					
2	_	_					
3	_	_	_				
4	_	_	_	_			
	/_		0)//40= 04	~\ ~ - 4			


 (1_2) : 2x(2+30+5+46)/(135+98) = 0.71

Ejemplo IVI1, todas las especies.

Estructura Diamétrica.

<u>Perfiles de Vegetación</u>: se levanta una parcela de 100 x 10 m. En cada individuo se toma la identificación, coordenadas (x,y), dap, altura total y de fuste, tamaño de la copa (x,y).

ESPECTROS BIOLÓGICOS.

.- FORMAS DE VIDA SEGÚN RAUNKIAER.

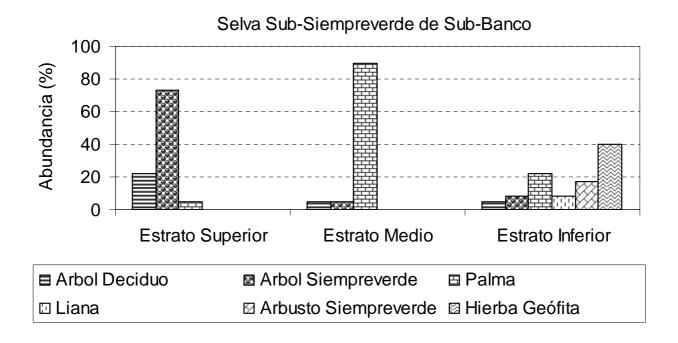
Fanerófitas: yemas de renuevo a más de 0.5 m de altura.

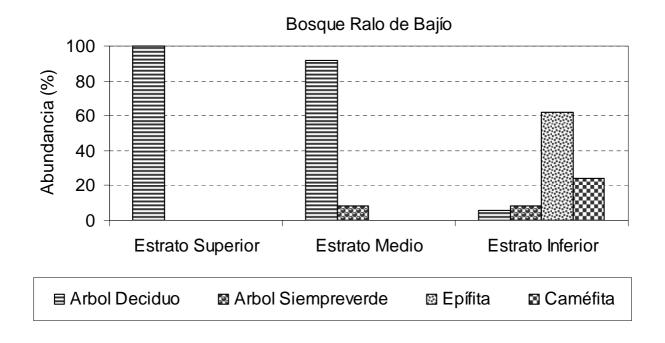
Caméfitas: yemas de renuevo entre 0 y 0.5 m de altura.

Hemicriptófitas: yemas en la superficie del suelo.

Criptófitas: geófitas (yemas subterráneas); hidrófitas (yemas sumergidas).

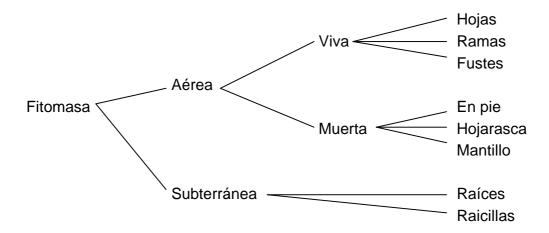
Terófitas: plantas anuales que pasan la época desfavorable en forma de semillas.


(se utilizó 0.5 m debido a la altura promedio de la capa de nieve en Europa).


.- SISTEMA DE VARESCHI.

Considera 48 formas biológicas para los trópicos, distribuidos en los siguientes 15 grupos principales:

- I. **Árboles**: pluviales, seudopluviales, lauriformes, caducifolios, forma de acacia, follaje duro, suculentos.
- II. **Arbustos**: pluviales, seudopluviales, lauriformes, caducifolios, forma de acacia, follaje duro, suculentos, enanos, de cojín.
- III. **Sufrútices**: siempreverdes, caducifolios, enanos, de cojín.
- IV. Cañas: gigantes, bambusillo, cespitosas, fasciculadas, anuales.
- V. **Hierbas aéreas**: gigantes, euhierbas, de tapiz, de cojín, suculentas.
- VI. **Hierbas geófitas**: tallos subterráneos, de tapiz, de cojín.
- VII. Hierbas anuales.
- VIII. Plantas trepadoras: lignificadas siempreverdes y caducifolias, herbáceas (idem).
 - IX. Lianas temporales.
 - X. **Epífitas**: lignificadas, herbáceas, almacenadoras, infundibiliformes.
- XI. Epífitas saprófitas.
- XII. Hemiparásitos.
- XIII. Parásitos.
- XIV. Plantas adhesivas.
- XV. Plantas intramatricales.


Espectros biológicos en algunas comunidades de la Reserva Forestal Caparo (Giammarresi, 1989; Arends, Guevara y Carrero, 1993; clasificación de Boerboom y Rodríguez, 1971).

ESTUDIOS DE BIOMASA.

<u>Definición</u>: biomasa es la cantidad total de materia orgánica existente en un momento dado en un sistema biológico. Se expresa en kg/árbol, gr/m² o ton/ha.

Importancia.

- Determinación de las características funcionales de los ecosistemas: permite estimar la producción primaria neta (acumulación de materia orgánica durante un lapso determinado), el balance de nutrientes y el flujo de energía (los componentes de la biomasa son reservas energéticas que se transfieren).
- Unidad de medida en algunas industrias forestales: fibras, partículas, productos secundarios (forraje, frutos), leña, carbón, etc.
- Evaluación del impacto por eutrofización en represas.
- Evaluación de la recuperación de áreas intervenidas.
- Estimaciones del balance de carbono (50% de la biomasa vegetal).

Métodos de estudio.

.- MÉTODO DESTRUCTIVO.

- Se recomiendan parcelas entre 0,25 y 0,5 ha.
- Se realiza un inventario completo de todos los individuos (dap, altura de fuste y total).
- Tumba, roleo, separación y pesaje de los componentes de cada individuo (fuste, ramas principales, ramas secundarias, hojas).
- Toma de muestras para el secado (en estufa). Determinación del contenido de humedad y peso seco en cada componente.
- En árboles seleccionados se extraen las raíces principales y secundarias. Se determina el peso húmedo. Se toman muestras para determinar el peso seco.
- Las raicillas se estiman en muestras de suelo de 25 x 25 x 50 cm. Estas raicillas se separan por el método de flotación y tamizado.

.- MÉTODO DEL ÁRBOL MEDIO.

- Se realiza un inventario del rodal.
- Se determinan entre 5 y 10 "árboles medios" de acuerdo al dap.
- Se tumban y pesan los árboles medios (fuste, ramas, hojas).
- Se obtiene un valor de biomasa del árbol medio y se multiplica por la abundancia total.

.- ANÁLISIS DIMENSIONAL.

- Determinar la estructura diamétrica del rodal.
- En cada categoría diamétrica se hace una selección aleatoria de entre 10 y 15% de los árboles.
- Se tumban y pesan los árboles seleccionados (fuste ramas y hojas).
- Se establecen ecuaciones de regresión que permitan estimar la biomasa de un individuo con base en variables como el dap, la altura y la densidad.

Ecuaciones de Brown et al (1989) para el cálculo de biomasa (Y=kg/árbol; D=dap en cm).

Bosque Seco Tropical	Y = 34,4703 - 8,0671(D) + 0,6589 (D2)
Bosque Húmedo Tropical	Y = 38,4908 – 11,7883 (D) + 1,1926 (D ²)

Ejemplo: un individuo con cap = 483 mm, en Bosque Húmedo Tropical.

D= $48.3 / \pi \rightarrow$ D= 15.37; Y= $38.4908 - 11.7883 (15.37) + 1.1926 (15.37)^2 <math>\rightarrow$ Y = 135 kg

Fitomasa en diferentes bosques de Venezuela.

COMPONENTE	Bosque Nublado Mérida (bhMB)		Bosque Estacional Barinas (bsT-bhT)		Bosque Pluvial Amazonas (bmhT)	
	ton/ha	%	ton/ha	%	ton/ha	%
Árboles	(374)	(80.2)	(405)	(90.4)	(280)	(80.2)
Hojas	5	1.1	4	0.9	6	1.7
Ramas	43	9.2	149	33.3	46	13.2
Fuste	270	57.9	216	48.2	176	50.4
Raíces	56	12.0	36	8.0	52	14.9
Lianas	2	0.4	14	3.1	16	4.6
Sotobosque	28	6.0	14	3.1	27	7.7
Mantillo	38	8.2	9	2.0	10	2.9
Mat. Muerta	24	5.2	6	1.3	16	4.6
TOTAL	466	-	448	-	349	-
Fuente	Grimm y Fassbender (1961)		Hase y Folster (1962)		Jordan (1989)	

Fitomasa en diferentes Zonas de Vida (Bello, 1996).

Zona de Vida	Ubicación	Biomasa (ton/ha)	
be-T	Cerro El Malecón, Falcón	18-20	
bms-T	Cerro El Coco, Anzoátegui	110-145	
bs-T	Caimital, Barinas	147-228	
bs-T	Ticoporo, Barinas	133-149	
bs-T	Río Grande, Bolívar	327-379	
bh-T	Km 88, Bolívar	313-405	
bh-MB	San Eusebio, Mérida	227-293	
bh-M	La Mucuy, Mérida	272-318	