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ABSTRACT

Internet wireless access has become ubiquitous and one of its widely spread technology

corresponds to 802.11. However, this kind of access is mostly limited to stationary

users when they are within the range of WiFi Access Point. Our interest is studying

the mechanisms involved to understand and be able to implement solutions to provide

seamless user mobility on this kind of networks.

In order to achieve this goal, an enhancement TCP mechanism [2], Divacks, was

implemented and evaluated, especially in mobile environments.
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Chapter 1

Introduction

Internet wireless access has become ubiquitous and its main technology nowadays corre-

sponds to 802.11. However, this kind of access is limited to static users when they are within

the range of the Wi-Fi Access Point. And thus, our interest on studying the mechanisms

to understand and implement solutions to provide user mobility on this kind of networks.

So far, we have observed that transport layer su�ers from frequent connection interruptions

due to the so-called handovers.

Whenever a MS (mobile station), moves from an AP (access point) to another one, a

process called handover takes place. This process is the transfer an ongoing call or data

session from the AP the mobile device is currently connected to, to another one. Whenever

a handover occurs, a TCP transfer is interrupted. After this interruption the TCP sender

should adjust its transmission rate to discover the rate provided by the new AP. The main

objective of this recovery is then, to allow a mobile terminal running an application, ex-

perience a seamless continuity in the service. This implies that whenever a mobile station

performs a handover, the running applications should have the smaller impact as possible:

the delay of connecting to a new access point and the time needed to discover the available

bandwidth must be as small as possible.

1



2 Chapter 1 Introduction

The �rst, and most general goal, is to study of the TCP mechanisms that take place

when the available bandwidth needs to be discovered and how handovers impact on TCP.

The second goal was to implement a fast-ramp up mechanism, the Divacks mechanism

presented in [2], on a Linux platform. Two variations to the method were proposed and

evaluated in a deployed testbed that had been adjusted as to better understand the TCP

legacy mechanisms and the way the Divacks mechanism works. Afterwards, the impact of

handovers on TCP while having the mechanism enabled, was measured.

This document is organized as follows: In chapter 2, 802.11 networks are described

and the di�erent types of handover will be presented, making a strong emphasis in layer

2 and layer 3 handovers. The TCP default mechanisms that take care of the bandwidth

discovery and the impact handovers have on the TCP layer are introduced in chapter 3.

In chapter 4 we will analyse the existing solutions that handle with the discovery of the

available bandwidth and that deal with handovers. In chapter 5 we will present the Divacks

mechanism and it's two variations, explaining they work. A working implementation in a

Linux kernel is presented in chapter 6. In chapter 7, the results obtained by the evaluation

of the behaviour of the mechanism and it's interaction with the di�erent parameters of the

testbed, are displayed. Finally, conclusions are arisen in chapter 8.



Chapter 2

802.11 Networks and handovers

2.1 802.11 Networks

The IEEE 802.11 is a standard for implementing wireless local area network (WLAN) com-

puter communication. These standards provide the basis for wireless network products using

the Wi-Fi brand. It was �rst released in 1997.

The 802.11 family consist of a series of half-duplex over-the-air modulation techniques

that use the same basic protocol. There are several amendments, they append a unique

letter to the end of the name. A brief description of each one is presented.

• 802.11 Provides 1 or 2 Mbps transmission in the 2.4 GHz band.

• 802.11a Provides up to 54-Mbps in the 5GHz band.

• 802.11b (also referred to as 802.11 High Rate or Wi-Fi) Provides 11 Mbps transmission

(with a fallback to 5.5, 2 and 1-Mbps) in the 2.4 GHz band.

• 802.11e Adds QoS features and multimedia support to the existing IEEE 802.11b and

IEEE 802.11a wireless standards, while maintaining full backward compatibility with

these standards.

• 802.11g Is used for transmission over short distances at up to 54-Mbps in the 2.4 GHz

bands.

• 802.11n Adds adding multiple-input multiple-output (MIMO). The additional trans-

mitter and receiver antennas allow for increased data throughput through spatial multi-

3



4 Chapter 2 802.11 Networks and handovers

plexing and increased range by exploiting the spatial diversity through coding schemes

like Alamouti coding. The theoretical speed that can reach is 128 Mbit/s.

• 802.11ac It is actually under development. It operates only in the 5 GHz frequency

range and features support for wider channels (80MHz and 160MHz), more streams

(up to 8), and high-density modulation (up to 256 QAM) to reach a throughput of 1

Gbps

• 802.11ad (also referred to as WiGig) It operates in the 60 GHz frequency band and

can achieve a theoretical maximum throughput of up to 7 Gbits.

• 802.11r (also referred to as Fast Basic Service Set (BSS) Transition) It supports VoWi-

Fi handover between APs to enable VoIP roaming on a Wi-Fi network with 802.1X

authentication.

• 802.11X Is a standard that allows network administrators to restrict the use of IEEE

802 LAN service APs to secure communication between authenticated and authorized

devices.

2.2 The OSI Model

The Open Systems Interconnection (OSI) model is standardization made to characterize the

functions of a communications system in terms of abstraction layers. A layer serves the layer

above it and is served by the layer below it. The seven layer model is the most well know,

where layer are numbered from 1 to 7. The seven layers and their functionality are listed in

Table 2.1.

2.3 The CSMA/CA protocol

The carrier sense multiple access with collision avoidance (CSMA/CA) is a network multiple

access method in which carrier sensing is used. Here, nodes attempt to avoid collisions by

transmitting only when the channel is sensed to be idle. It is a protocol that operates in the

Data Link layer (Layer 2) of the OSI model.

In wireless networks, this mechanism is of great importance because it solves the hidden

node problem (present when using CSMA/CD) which can be seen in Fig. 2.1. Two nodes,

A and C can be located in a way in which they are not aware of the existence of each
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Data unit Layer Function

Data 7. Application Supporting application and end-user processes

Data 6. Presentation

Data representation, encryption and decryption,

convert machine dependent data

to machine independent data

Data 5. Session
Establishing, managing and terminating

connections between applications.

Segments 4. Transport

Providing transparent transfer

of data between end systems.

Responsible for end-to-end error recovery and �ow control.

Packets / Datagrams 3. Network
Routing, forwarding, addressing,

error handling, congestion control and packet sequencing.

Frame 2. Data link Data packets encoding and decoding into bits.

Bit 1. Physical Media, signal and binary transmission.

Table 2.1 The OSI model.

Figure 2.1 Hidden Node Problem.

other because they cannot hear one another's broadcast. Since they think that the link is

available, the will start to transmit simultaneously. If there is a third node, B, in the middle

that can hear both, a collision occurs. The Collision Avoidance method, avoids the hidden

node problem by attempting to divide the channel equally among all transmitting nodes
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within the collision domain. Now, the nodes will have to share the medium and transmit in

a ping-pong fashion, by taking turns.

2.4 Handover Process

A handover process takes place when a MS moves from an AP to another one. This process

is the transfer an ongoing call or data session from the old AP to the new one. Since the

TCP transfer is interrupted, the TCP sender needs to adjust its transmission rate to one

provided the new AP. The main objective of this recovery is then, to allow a mobile terminal

running an application, experience a seamless continuity in the service.

There are several scenarios in which a handover occurs. The �rst and most common one

happens when the MS is getting out of range of the current AP, making the signal strength

decrease and therefore degrading the connection. Another reason of a handover taking place,

presented in [14], is when an AP is overloaded with clients, it can force the MS to change

the AP it is connected to, as to alleviate the congestion.

2.4.1 Types of handovers

Handovers can be classi�ed in di�erent categories:

• Vertical and horizontal handovers: Vertical handovers happen when the internet

connection changes from from one technology to another one. This is di�erent from

a horizontal handover, which happens between di�erent devices that use the same

technology. A vertical handover involves changing the data link layer technology used

to access the network.

• Hard and soft handovers: They are also called Break Before Make and Make

Before Break respectively. In the �rst case, the MS cannot maintain simultaneous

communication with the new and the current device, while in the second case the

connection to the new AP is established before the connection of the current one is

broken.

• Layer 2 and layer 3 handovers: A handover might be categorized as layer 2 or 3

depending on whether the current and the new device the MS is attached to, are on

the same IP subnet or not. This will be introduced with more detail in the following

section because of its direct impact on the application level.
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Figure 2.2 Graphical representation of a layer 2 handover

We will we working with horizontal hard layer 2 handovers.

2.4.1.1 Layer 2 Handovers

A layer 2 handover takes place when both APs, the current and the new one, belong to the

same network, which means that they have the same SSID (Service Set IDenti�er) number

as Fig. 2.2 shows. When a layer 2 handover occurs, the IP address to which the MS is

connected to, remains the same. This does not mean that there is not an interruption in

the data transmission, the two handover delays mentioned in section 2.5.1 will take place

because of the interruption.



8 Chapter 2 802.11 Networks and handovers

The handover recovery delay, in layer 2 handovers might happen because, (1) the available

bandwidth in the new access point is lower than the one of the previous AP. In this case,

the sender's TCP cwnd (Congestion window) should be reduced and adapted faster to the

correct bandwidth sharing and (2), if the available bandwidth at the new AP is larger, a

faster TCP slow start is desirable to improve the transmission performance (see chapter 3:

The Transmission Control Protocol, section 3.2).

2.4.1.2 Layer 3 Handovers

On the other hand, a layer 3 handover occurs when the old access point and the new one,

belong to the di�erent IP subnets as presented in Fig. 2.3. When a layer 3 handover occurs,

the new roaming domain provides the MS a new IP address and consequently, a new port

number. This has to be managed as to reduce the impact that the applications running in

the MS, su�er as small as possible. Mechanisms like Mobile IP are used as to keep the same

socket (and therefore TCP connection) that was established before the handover occurred.

2.5 E�ects of Handovers

In this section, the e�ects that a handover has on the ongoing transmission and the di�erent

delays that are introduced are presented. A test in which handovers took place, and their

e�ects are visible, is going to be displayed.

2.5.1 Handover Delays

Whenever a handover occurs two di�erent delays can take place. Their duration will depend

on the nature of the handover and the network characteristics. They are illustrated in Fig.

2.4. In this �gure a transfer and its throughput is represented, in it we can see that after

a handover, there is a period of rime in which the new available bandwidth needs to be

discovered.

Handover latency This latency is the time introduced by a handover in which the is

no data exchanged. We must reduce this latency because, since there is no data exchanged

in this period of time, some of the applications running in the MS are going to feel a

disconnection.

Handover recover latency This latency is the time that it takes, after a handover
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Figure 2.3 Graphical representation of a layer 3 handover
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Figure 2.4 Handover's delays: Handover latency and handover recover latency.

to discover the available bandwidth. This latency should be reduced as to reach as fast as

possible the new bandwidth. The TCP connection has to do so, by triggering a legacy slow

start algorithm which increases the cwnd in an exponential mode. A fast ramp-up on the

cwnd should reduce the impact of the typical reduction on the cwnd.

2.5.2 General e�ects

When a handover occurs there are several behaviours related to the data transfer, and the

TCP protocol, that might take place. These are:

• The TCP transferrer will be interrupted: The data transmission will have a gap

in which there is no data downloaded to the MS since there is no connection to an AP

to do so (see section 2.4.1, Hard handovers). This e�ect is going to be quanti�ed by

the Handover latency duration.

• The TCP connection can be interrupted: This happens when a handover involves

changing of IP subnet. If the handover is managed to avoid so (ref to Mobile IP), this

interruption can be avoided.

• The available bandwidth needs to be discovered: The TCP sender should adjust

its transmission rate to the one provided by the new AP (see chapter: The Transmission
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Control Protocol, section 3.2). It will be quanti�ed by both the throughput and the

Handover recover latency.

2.5.2.1 Experimentation: Handover e�ects

Tests were performed in which an Android ICS 4.0.3 system working on a Samsung Nexus

S (GT-I9023) smartphone, downloading data and performing layer 2 handovers between dif-

ferent APs while walking between them. The deployment is presented in Fig. 2.5. In this

case the TCP connection was not interrupted.

The RSSI (Received signal strength) is the signal strength that the MS receives from the

Figure 2.5 Campus AP deployment for the android handover test.

AP. This value is obtained periodically (every 500 ms), by beacons in which access points

announce to all MS listening certain information about the network (and also announce the

presence of a Wireless LAN). The information emitted not only provides the RSSI but also

all the needed information as to allow mobile stations to associate to an access point.

In Fig. 2.6 the RSSI of the AP the Ms was connected to is plotted. In this graph there

is also plotted the number of AP the MS was associated to: the right y axis represents the

AP number and the red �at lines represent the connection between the MS and a certain

AP. Therefore is easy to see that before a handover occurs, the RSSI decreases, indicating

the Ms is going out of range of the AP. After the handover, when the MS is connected to

the new AP, the RSSI is large again. In Fig. 2.7 the downloaded data (measured with
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the sequence number) is presented. If �gures 2.6 and 2.7 are compared, the interruption

that a handover introduces in the data transmission, is noticeable. This comparison, can be

appreciated in Fig. 2.8 where the �at periods on the data transmission (meaning that no

data was exchanged) are highlighted.

Figure 2.6 Handovers impact on the data transfer: RSSI and number of the APs

to which the MS was connected to.

Figure 2.7 Handovers impact on the data transfer: goodput on the MS side during

the test was performed.
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Figure 2.8 Handovers impact on the data transfer: the data transfer is paused

while handovers occur.
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What are the importance of these e�ects?

The answer to this question will strongly depend on the type of applications the end user

is running. In some applications, just like sending, reading an email or browsing the Web,

the MS is functioning as a client in a client-server application that is not strongly a�ected

by small disconnections. On the other hand, a real time application would be more sensitive

to a change in the throughput and an interruption in the data transmission.

When any kind of handover occurs, we have seen that an interruption in the transmitted

data �ow takes place. The problem is not only the delay that this interruption introduces,

but also, how the handover a�ects the transmission rate. This is not only due to the proba-

ble fact that the available bandwidth of both APs is di�erent, but also because of the TCP

algorithms that are going to be executed in order to discover this new bandwidth. In the

following chapter, these algorithms are explained.



Chapter 3

The Transmission Control Protocol

The TCP, Transmission Control protocol, is a transport layer protocol. This protocol is

characterized for providing a stream oriented connection, which means that the data is

broken into segments (without any pre established size and structure) that have no sense

for the application layer. Here, the sliding window system, which is allows this behaviour

to take place, will be presented, together with the TCP Congestion Control strategies: slow

start mechanism and congestion avoidance that manage the way the available bandwidth is

discovered.

3.1 The Sliding Window System

In TCP, a sequence number is used to keep track of the stream data that is being exchanged.

It uses a sliding window system to indicate the number of data an endpoint can receive in a

moment of time. This system provides:

• reliability, by detecting and resending the lost segments and

• a data �ow control, by controlling the rate in which data is sent as not to overload the

receiver (which would make him discard segments).

The sliding window acknowledgement system makes use of an enhanced-PAR (Positive Ac-

knowledgement with retransmission) algorithm. The regular PAR algorithm needs the ac-

knowledge of a message to be received before sending the next message, or, a timer to be

expired (indicating that a message has been lost) before retransmitting the lost message.

Enhanced-PAR gets rid of the timer and does not need an acknowledge to be received before

sending the next packet [13]. TCP uses a sliding window acknowledge system in which bytes

are divided into four di�erent categories, see Fig. 3.1.

15



16 Chapter 3 The Transmission Control Protocol

• Sent and acknowledged: these are the older bytes in the transmission, the ones that

were sent and already acknowledged by the receiver.

• Sent and not acknowledged: bytes that have been sent but their acknowledgement

have not been received by the sender yet.

• Not sent but the receiver is ready to receive: the receiver could receive this data

in a burst without having any congestion problems.

• Not sent data that the receiver is not ready to be received: this is the data

that the server could sent but the receiver could not be able to handle.

Figure 3.1 TCP sliding window system: Send and usable window.

Both the receiver and the sender keep track of this numbers for both streams of data:

the data they are sending and the data they are receiving. When they are keeping track of

the data they are receiving, categories 1 and 2 are collapsed into one: bytes received and

acknowledged, see Fig.3.2.

Some de�nitions arise from the categories in which bytes, by the senders point of view,

Figure 3.2 TCP sliding window system: Receiving packets,bytes categories.

are group together. The TCP protocol de�nes a send and a usable window:
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• Send window/ window: its the number of bytes that the receiver allows to the

sender to send unacknowledged in a period of time.

Sendwindow = (Sent and not acknowledged+Not sent but the receiver is ready to receive) bytes

(3.1)

• Usable window: its the number of bytes that could be sent.

Usablewindow = (Not sent but the receiver is ready to receive) bytes (3.2)

A third window is de�ned, from the receiver's point of view.

• Receiver's window: its the number of bytes that the receiver is ready to receive in

a period of time.

The sizes of the windows will vary depending on the available bandwidth in the connection

and the TCP algorithms that are been executed. Whenever an acknowledge with a sequence

number is received, it means that all the bytes before that sequence number have been

correctly received by the receiver (cumulative acknowledgement system). When this happens,

some bytes from category two are transferred to category one. Since the window size did

not change, it will "slide" to the right, allowing bytes from category four to pass to category

three, making the usable window change its size (depending on the number of acknowledged

bytes).

We can then characterize the window by saying how it is evolving. The window closes

whenever an acknowledgement is received. When we say that the send window is growing,

it means that the right edge moves to the right, because there is more data that the receiver

can receive in a moment of time. If the send window is shrinking, it means that the receiver

can handle a smaller amount of data than before (the right edge is moving to the left).

3.1.1 Sliding window pointers

To keep track of the bytes that should be sent and those that the receiver should acknowledge,

the sender keeps track of them by using some pointers. They are shown in Fig. 3.3 and

de�ned here below:

• SND.UNA: the sequence number of the �rst sent but not yet acknowledged byte.

• SND.NXT: sequence number of the next byte of data to be sent.
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Figure 3.3 TCP sliding window system: Sender's pointers.

• SND.WND: indicates the number of bytes the send window is.

Therefore, the number of bytes that can be sent together in a given moment of time, de�ned

in Equation 3.2 can be rede�ned by using the TCP sender's pointers, in Equation 3.3.

Usablewindow = (SND.UNA + SND.WND − SND.NXT ) bytes (3.3)

The receiver also takes track of the data it should receive from the sender. It uses two

pointers:

• RCV.NXT: sequence number of the next byte of data expected to be received.

• RCV.WND: indicates the number of bytes that it is willing to receive at one time

from the sender.

Figure 3.4 TCP sliding window system: Receiver's pointer.

The RCV.NXT variable should store the same value that the sender registered in it's

SND.NXT variable. If both values match, it indicates that no packet was lost; otherwise

it means that there are packets lost or some packets in �ight have not been taken into ac-

count by one of them. When the receiver sends an ack, with the sequence number stored in
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RCV.NXT, it indicates the sender, that all the bytes before the one actually being acknowl-

edged, have been received correctly.

There are some TCP mechanisms that manage how these windows size evolve depending

on the network and connection characteristics. There are two congestion control strategies

(1) slow start and (2) congestion avoidance, that try that the available bandwidth is been

pro�t but at the same time, that congestion in the receivers side is avoided. These strategies

use some windows to estimate how much congestion there is between the two places. They

are:

• Congestion window (cwnd): Is the number of outstanding bytes at a given time,

which corresponds to the already de�ned Send Window.

• Reciever's announced window (rwnd): Is the amount of data that the receiver is

ready to receive at a given time, which corresponds to the already de�ned Receiver's

Window. .

The sender will always transmit the minimum value between cwnd and rwnd, as Equation

3.4 shows.

Effectivewindow size = min{rwnd, cwnd} (3.4)

3.2 Slow start

When a connection is recently established segments, need to be transferred in a moderate

fashion as not to saturate the receiver and the existing connections in the network. At the

beginning, the value of the cwnd is equal to one MSS (maximum segment size). Therefore,

the sending rate is MSS/RTT. To fast discover the available bandwidth, whenever an ac-

knowledgement is received, the cwnd size is increased by a MSS (see Fig. 3.5), which makes

it grow in an exponential way: the host A sends one segment, when it is acknowledged

by host B, the value of cwnd grows to two MSS so two segments are sent, when they are

acknowledged, cwnd grows to 4 MSS, and so on. Therefore the sending rate gets doubled

every RTT.

This will happen until one of three things happens:

• A packet is lost (indicating that the link is congested), which is indicated by a time

out.
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Figure 3.5 TCP slow start.

• A threshold (ssthresh) is reached.

• Three duplicate ack are received.

In the �rst case, the �rst time it occurs, the value of 1/2 * cwnd (half the size the window

reached before the time out) is going to be stored in the ssthresh (slow start threshold)

variable and slow start will begin again with cwnd = 1. Whenever the threshold is reached,

since it is equal to half the value of cwnd when the time out occurred, the window will not be

doubled (which would probably end up in congestion), but TCP will enter to the congestion
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avoidance mode (explained in the following section). Finally, when three duplicate acks are

received, TCP enters the Fast Retransmit state (see section 3.4).

3.3 Congestion avoidance

This algorithm takes place when cwnd is equal to half the value when the last congestion

occurred. Therefore, the size of cwnd is not going to be doubled, but linear growth of one

MSS per RTT will take place.

This increase is ceased when: (1) a new time out happens, case in which slow start state

takes place or (2) three duplicate acks are received; the cwnd is halved (adding 3 MSS), the

value of ssthresh is recorded as half the value of cwnd when the triple duplicate acks were

received and the fast recovery state is entered.

3.4 Fast Recovery

In this state the value of cwnd is increased 1 MSS by duplicate ack received for the segment

taht caused TCP to enter to Fast Recovery state. When the segment is received, TCP

goes back to congestion avoidance with a reduced cwnd. On the other hand, if a time out

happens, slow start is triggered with congestion window equal to one MSS and ssthresh equal

half the value of cwnd when the loss occurred. The TCP Reno version of TCP includes Fast

Recovery, which is not included in the TCP Tahoe version.
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Chapter 4

State of the art

In this chapter, several existing enhancements to the TCP protocol are addressed. The

existing solutions have a di�erent nature regarding the way in which the discovery of the

new available bandwidth is approached and if whether it is solution that takes place only

after a handover or not.

4.1 Classi�cation of the TCP enhancement mechanisms

The enhancements can be characterized by the way they work. Here we present three not

exclusive groups, which means that a solution may be be part of more than one group at a

time.

• Bandwidth estimation. Some schemes try to estimate the available bandwidth

before establishing an actual sending rate. The estimation can be done by the end

host himself or with information provided by other connections or intermediate nodes

in the path.

• End-to-end solutions. These kind of mechanisms are based on having only the end

hosts modi�ed rather than the intermediary nodes. There are solutions that rely on

the local bu�ering of either frames or acknowledgements, choosing the sending rate by

themselves (by directly modifying the value of rwnd or the amount of data to send

by RTT). In this kind of approaches, a balance needs to be found because if acks

are bu�ered for a long time, retransmissions will take place, making the mechanisms

useless.

• Awareness of the wireless link. The essence of these kind of mechanisms is that

both the server and the client are aware of the wireless link. Di�erent solutions can

23
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take place, some of them inhibit the congestion control mechanisms in the wireless link.

Others, called split-connection approaches, divide the connection into two transport-

layer connections: one between the client and the wireless access point, and another

one between the wireless AP and the server. By doing so, di�erent behaviours of TCP

are handled in each part of the connection.

4.2 Existing TCP enhancement mechanisms

There are diverse TCP enhancement solutions that handle the problem introduced by the

discovery of the available bandwidth. Here we are going to introduce them by using the

classi�cation presented in the previous section.

4.2.1 Bandwidth estimation

In the case in which the network is sensed to have an estimation of the available bandwidth,

several schemes have been presented.

To start with, the Swift Start by Partridge [18] mechanism is a solution in which the

�rst group of data packets sent is used to estimate the bottleneck bandwidth. This estimate

indicates how to scale the size of the cwnd as to take use of the available bandwidth. Equation

4.1 describes this relation.

Estimated cwnd = bottleneck capacity ∗ RTT (4.1)

A second kind of approach, takes pro�t of the already established connections to inform

the new one, the appropriate size of cwnd that should be used for the path concerned.

This new connection will not have to probe the network path and trigger the slow start

algorithm. The congestion manager maintains congestion parameters and exposes an API to

enable applications to learn about network characteristics, pass information to the congestion

manager, and schedule data transmissions. This mechanism is called Congestion Manager

and is presented in [7] by Balakrishnan.

A similar mechanism involves the collaboration between the end host and routers. The

Quick-start [19] mechanism, by Sarolahti, allows TCP to explicitly request permission

(from routers along the network path) to send at a higher rate than the normally allowed

by TCP's congestion control mechanisms.
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4.2.2 End-to-end solutions

On the other hand, there are end-to-end solutions in which collaboration between the network

and its elements is not needed.

The Jump Start technique introduced by Lui in [15] removes the traditional start up

phase present in the slow start TCP algorithm. It does so by beginning the transmission

at whatever rate the algorithm �nds appropriate. The chosen rate will be the minimum

between rwnd and the amount of data queued locally for transmission. In this mechanism,

retransmissions are probable but is a cost that is neglectful versus the gain obtained by

almost transferring all the transfer in the �rst RTT. This is a sender-side change to the

TCP's congestion control algorithms.

On the same direction Go� proposes Freeze-TCP from [10], a mechanism that modi�es

(by freezing) the receiver's window before a predicted disconnection happens. With this

behaviour, packets are avoided to be lost. When the connection is re-established, the saved

value of rwnd (from before the disconnection) is re-announced to the server, making the

transmission to restart at the previous rate.

4.2.2.1 Acknowledgement mechanisms

There is a group of mechanisms that try to increase as fast a possible the throughput by

modifying the way in which the receiver sends the acknowledgements. Some of these mech-

anisms are going to be introduced in this section.

The �rst one, by Caceres [9], is a solution only valid in mobile environments were han-

dovers take place. After a handover, a time out is started after reducing the size of the

congestion window. To reduce this time, three copies of the same ack (that acknowledges

the last data packet received before the disconnection) are sent. This forces a new packet to

be sent and the time out to expire.

A second mechanism introduced by Miten in [17], called Delayed Duplicate Acknowl-

edgements, proposes to delay duplicate acknowledgements so the wireless link can take care

of the missing packet instead of forcing the sender to enter in unnecessary congestion control

mechanisms.
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4.2.2.2 Divided acknowledgement mechanisms

A group of mechanisms base their functionality in the division of the acknowledgements of

data packets into several ones. By doing so, the congestion window grows allowing more

data packets to be transferred.

The Spack mechanism presented by Jin in [12], sends several acknowledgemets to sender

when there is a retransmission detected. A second mechanism called Ack-pacing proposed

in [16] by Matsushita, also sends divided acknowledgements but only after a vertical handover

takes place. In the Ack spliting mechanism by Hasegawa [11], there is a local estimation

of the cwnd in the receiver's side as to calculate the number of divided acknowledgements

needed to go back to the original lost rate. This mechanism also adapts the divacks rate

to the available uplink bandwidth as not to saturate the link. The Divacks mechanism

by Arcia Moret [2] and [5], as all the mechanisms presented in this section, divides the

acknowledgements as to gain a larger throughput by forcing the growth of the cwnd.

4.2.3 Awareness of wireless links

There are two main mechanisms that split the connection in two parts. I-TCP, Indirect

TCP proposed by Bakre in [6], proposes to remove TCP from the wireless link and assign

the responsibility of the emission of acks to the AP. The second one is more complex. M-

TCP, proposed by Brown in [8], also splits the connection in two: MS to AP and AP to

sender but it combines its functionality with the way in which Freeze TCP works. When a

disconnection or a packet loss is detected the AP forces the sender into persist mode, where

it forces the cwnd not to be dropped by holding back the ack to the last byte.
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4.3 Metrics for mechanisms evaluation

In [10], evaluation factors are introduced as to highlight the strengths and drawbacks of the

existing mechanisms. This list was taken and extended, as to characterize the mechanisms

so far introduced.

• Encrypted tra�c: In cases where the whole payload is encrypted, which is the case

of IPSEC in IPv6, mechanisms that require intermediaries or snooping are not feasible.

• Interoperation with the existing infrastructure: To assure that interoperation

is maintained, no changes should be required at intermediate routers or the senders

side, which are generally unavailable for modi�cations. Mechanisms that split the

connection require modi�cations and processing at intermediate nodes.

• Scalability: Access points have to bu�er data of all the MS that are connected to

it (and process this data, to some extent). When the MS moves, all of it's data

and the connection information, have to be transferred to the new AP. This creates

overhead and makes the sender drop the cwnd, defeating the original purpose of these

mechanisms.

• Frequent disconnections: As frequent disconnections are prompt to happen in wire-

less environments, it's important that mechanisms handle this kind of disconnections.

There are some approaches that need a certain period of time as to be able to react to

handovers.
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4.4 Evaluation of the presented mechanism

In this chapter, several enhancements to the TCP protocol were introduced. But some of

them are best suited than others if they are evaluated by the metrics introduced in the pre-

vious section.

The encryption of the IP payload makes that the Indirect TCP and M-TCP mechanisms,

fail to work since they are based on the AP mediating the tra�c. Mechanisms such as Con-

gestion Manager and Quick Start that depend on the network to perform the estimation of

the bandwidth, are not scalable since end-to-end solutions are preferred since only the hosts

need to be modi�ed.

The delayed duplicate acknowledgement solution has shown good results but it can de-

grade the performance in presence of occasional transmission losses. Jump start has also

shown that it can degrade individual connection's performance while also increasing the

overall congestion level on the network. Also, because the Swift Start algorithm is based on

network estimation, it is unstable because of the network dynamics shown by [1].

The Freeze TCP and the Divacks [3] mechanisms have a lot in common. They both are

end-to-end schemes that not require intermediates to participate in the �ow control, they

simply exploit the way in which the TCP protocol works. The inter-operability with the

existing infrastructure is guaranteed. The drawback of the Freeze TCP is that it needs to

know that mobility is taking place as to trigger the mechanism, therefore the NIC vendors

need to provide details on their roaming and handover algorithms.

TheDivacks mechanism was chosen to be implemented and tested in a real environment.

The manner in which Divacks works will be addressed in detail in the next chapter: The

Divacks Mechanism, followed by the implementation in a linux kernel in chapter 6: Imple-

mentation of the Divacks mechanism. Finally, the results obtained are presented in chapter

7: Experimentation.
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The Divacks Mechanism

So far, we had characterized the di�erent kinds of handovers and their consequences. We

also presented our goals regarding handovers and the impact they have on TCP. Now, we

will present our proposal to handle them: the Divacks mechanism. The Divacks mechanism

is based on using the TCP data acknowledgements not only to indicate that a packet was

correctly received, but also to force the congestion window to grow. This growth will make

that the speed in which the new available bandwidth is discovered (of the new AP) to

increase. Therefore, the handover recovery latency is reduced. In this chapter, we are going

to explain how the divacks mechanism operates to gain speed in the TCP transfers.

5.1 Divacks mechanism's operation

The basic idea behind the algorithm is that whenever a data packet is received, the receiver

will not send one acknowledgement (as regular TCP does, see Fig. 5.1) but several ones,

called divacks for divided acknowledgements. The divacks mechanism takes advantage of

the relationship between the acknowledgement emission (performed by the receiver) and the

sender's TCP cwnd size. As explained in section 3.2 (TCP, slow start) the value of the

senders congestion window limits the number of unacknowledged bytes that can be sent to

the client in a given time. Because this value is increased/decreased by the reception/loss

of acknowledgements, if more acks are sent by the receiver (without any losses); the senders

cwnd will be increased in a shorter period of time, allowing the sender to increase the

throughput.

The basic idea behind the divacks algorithm is that whenever a data packet is received,
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Figure 5.1 TCP acknowledgement system: one ack per data packet.

the divacks client will send n divacks (quantity de�ned by the user) and the full ack in a

burst, see Fig. 5.2. Each one of this divacks will acknowledge a smaller amount of data than

the original one (the undivided ack, called full-ack). The �rst divack will almost acknowledge

all the packet. It`s size is determined by Equation 6.1. In Fig. 5.2 it can be seen that the

data packet received has a length of y bytes; then, the �rst divack will acknowledge y - (2-

1) bytes (with an acknowledgement number = k + y - (2 - 1)). The next (n - 1) divacks

will only acknowledge one byte: in this case is only another divack, which acknowledges y

bytes with an acknowledgement number = k + y. Finally the original full-ack will be sent,

acknowledging one byte and having the original acknowledgement number, k + y + 1.

FirstDivackBytesToAcknowledge = (packets size− (n− 1)) bytes (5.1)

The reader might be driven to think that the higher the number of divacks sent, the faster the

cwnd will grow and therefore the data rate. This is not the case because there is a threshold

between the number of divacks sent and the actual gain obtained in the total throughput.

This limit is set by the ping pong e�ect presented in the following section.
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Figure 5.2 Divacks acknowledgement system: several acks per data packet, three

in this example.

5.2 The Ping Pong E�ect

The ping pong e�ect introduced in [4] is an e�ect that takes place during a TCP connection

in which there is a large amount of packets to be transmitted via a wireless link. Since the

divacks mechanism pro�ts by dividing one original acknowledgement into several ones, the

tra�c in the uplink (client to server) increases, and so does in the downlink (in response

to the divacks received, the server sends more data packets). Therefore, as the number

of divacks sent increases, the amount of segments in both links also does. The CSMACA

protocol, presented in section 2.3, makes that the AP and the client are only enabled to

send packets or receive them, but not both at the same time. Packets are going to be sent

in a ping pong fashion: the client and the AP will take turns to send packets to each other.

If the tra�c increases, by sending more divacks, it is not certain that the performance of

the mechanism will improve since the medium is shared. There is a limit to be found: the
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maximum number of divacks to send per data packet while not falling into the ping pong

e�ect and saturate the wireless link.

5.3 Divacks variations

Having the ping pong e�ect in mind is that it was decided to implement two variations of

the divacks mechanism: one that sends divacks as long as the slow start TCP strategy is

taking place, called Brute Force divacks mechanism, and a second one, called Controlled

divacks mechanism, in which after a de�ned number of divacks has been sent, the divacks

mechanism is inhibited and only full-acks are sent.

5.3.1 Brute Force Divacks mechanism

When the Brute Force variation in enabled, n divacks are going to be sent per data packet

received when TCP is in the slow start state. This method is aggressive which does not

imply, as already mentioned, that throughput will be larger.

5.3.2 Controlled Divacks mechanism

The Controlled Divacks mechanism takes advantage of the limitations that the wireless link

introduces and reduces the unnecessary uplink tra�c. This is achieved by setting a limit on

the number of divacks to be sent during a TCP connection.

To achieve this behaviour, two parameters are needed: one to keep track of the number of

divacks already sent: tcp_divack_count and another one that sets the limit: tcp_divack_max_count.

When the connection is established, the value of tcp_divack_count is equal to zero. Every

time a data packet is received n divacks are sent and tcp_divack_count is incremented in n,

until tcp_divack_count reaches the limet set by tcp_divack_max_count. When this hap-

pens, only the (original) full-acks are going to be sent.

By sending divacks only at the beginning of the transfer, the available bandwidth is dis-

covered rapidly at take-o� but it also frees the wireless link from divacks, allowing the data

packets to be transferred without congestion due to unnecessary divacks.
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Implementation of the Divacks

mechanism

The goal of this chapter is to indicate all the necessary steps to deploy the divacks mechanism

in a Linux kernel. This operating system was chosen because of its open source software

development and distribution characteristics. The Linux kernel version 2.6.35.7, also called

Yokohama, was chosen because it is a stable version (released August 1st, 2010).

To implement the mechanism, both the divacks server and the divacks client need to be

modi�ed as to allow the emission of divacks in the client side and the reception of them, in

the servers side. In this section all the modi�cations done on both kernels can be found.

Initial Requirements

The computers where divacks is going to be implemented and deployed must be running

Ubuntu 10.04. Check this by typing:

1 mmmary@mmmary -laptop :~ \$ lsb_release -a

6.1 Obtaining the source �les

The v2.6.35.7 linux kernel source �les can be obtained from the o�cial site:

1 mmmary@mmmary -laptop :~ \$ wget http://www.kernel.org/pub/linux/kernel/v2.6/linux -2.6.35.7.

tar.bz2

Move the ziped kernel from the download directory to /usr/src and unzip it:
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1 mmmary@mmmary -laptop :~ \$ sudo mv ./ Downloads/linux -2.6.35.7. tar.bz2 /usr/src/

2 mmmary@mmmary -laptop :~ \$ cd /usr/src

3 mmmary@mmmary -laptop :/usr/src \$ sudo tar -xvf linux -2.6.35.7. tar.bz2

A symbolic link should be created as to be allow to create scripts and (if necessary) only

change the kernel.

1 mmmary@mmmary -laptop :/usr/src \$ sudo ln -s linux -2.6.35.7/ linux

6.2 Con�gurating the kernel

Before con�guring and compiling the kernel, it is necessary to have some packets installed.

1 mmmary@mmmary -laptop :~ \$ sudo aptitude install build -essential libncurses5 -dev

If some of the packets cannot be found, �rst update your system and retry to installthem.

Have your system up to date by typing:

1 mmmary@mmmary -laptop :~ \$ sudo aptitude update

We will use a make�le to compile the kernel. The �rst time it will take some time, but

afterwards only the the changed �les and their dependencies will have to compiled.

1 mmmary@mmmary -laptop :/usr/src \$ cd linux

2 mmmary@mmmary -laptop :/usr/src/linux \$ sudo make menuconfig

We will change the congestion default algorithm: from cubic to reno. Cubic is a derivation

of Binary increase Congestion Control (BIC) which tries to �nd the maximum of the cwnd

by using a binary search algorithm. Here, the cwnd is a cubic function of time since the last

congestion event. CUBIC is used by default in Linux kernels since version 2.6.19. Reno (in

this case New Reno) makes that during fast recovery, for every duplicate ack that is returned

to TCP, a new unsent segments from the end of the congestion window is sent, to keep the

transmit window full. As to do so we must go to: Networking support ->Networking options

->TCP: advanced congestion control -> Default TCP congestion control, change the option

and save. See Fig. 6.1.
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Figure 6.1 Screenshot of the menucon�g. Selection of the congestion control

algorithm.

6.3 Implementing the divacks mechanism

6.3.1 Modi�cations in the clients side

The following modi�cations only concern the kernel that will be deployed in the client com-

puter. The client will be downloading data from the server.

6.3.1.1 Divacks parameters

Four system parameters need to be implemented as to modify in runtime the behaviour of

the divacks mechanism. These are:

• tcp_divack: This is the number of divacks sent per data packet, also presented as n

in the previous chapter. This parameters will allow only natural numbers, from 0 to

SMSS - 1:

� 0: the divacks technique is deactivated. One full-ack is sent.

� 1: the acknowledgement is divided in two parts: one divack and the full-ack.

� 2: the acknowledgement is divided in three parts: two divacks and the full-ack.

� . . . until SMSS - 1.
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• tcp_divack_controlled: This variable indicates which algorithm is used. There are

only two possible values:

� 0: the Brute Force algorithm is used

� 1: the Controlled algorithm is used. In this case the following two variables need

to be set.

• tcp_divack_count: This variable is increased once every time a divack is sent during

a TCP connection.

• tcp_divack_max_count: This indicated the maximum number of divacks that can

be sent. Therefore, when tcp_divack_count = tcp_divack_max_count the divacks

mechanism is inhibited and only full acks are sent.

Variables need to be declared before using them. We will declare them in the net/ipv4/tcp_input.c

�le. The sysctl_ pre�x is used as to indicate that is a system control parameter.

1 mmmary@mmmary -laptop :/usr/src/linux\$ sudo gedit net/ipv4/tcp_input.c

Add the following lines (98):

1 int sysct l_tcp_divack __read_mostly ;

2 int sysct l_tcp_divack_contro l l ed __read_mostly ;

3 int sysctl_tcp_divack_count __read_mostly ;

4 int sysctl_tcp_divack_max_count __read_mostly ;

The next step is to modify the ctrl_table ipv4_table[ ] de�ned in the net/ipv4/sysctl_net_ipv4.c

�le. In this table the name of the variable in the system control tree (procname), the address

of the variable that contains the data (data), the size of the variable (maxlen), the permis-

sions (mode) and the function that handles it (proc_handler). In this case, the procname

is the name of the tcp_divack variable in the /proc/sys/net/ipv4 directory and the variable

that contains the data is sysctl_tcp_divack which has the size of an int, the owner of the

�le is root (with writing and reading permissions and only reading permission for the group

and other users (0644)) and the proc_handler will be assigned to proc_dointvec which will

write whole numbers from and to the user's bu�er. The four variables will be added in the

same fashion. Open the �le to edit:

1 mmmary@mmmary -laptop :/usr/src/linux \$ sudo gedit net/ipv4/sysctl_net_ipv4.c

Add the following lines in the ipv4_table[ ] (line 493): (624)
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1 { . procname = "tcp_divack" ,

2 . data = &sysct l_tcp_divack ,

3 . maxlen = s izeof ( int ) ,

4 .mode = 0644 ,

5 . proc_handler = proc_dointvec ,

6 } ,

7 {

8 . procname = "tcp_divack_count" ,

9 . data = &sysctl_tcp_divack_count ,

10 . maxlen = s izeof ( int ) ,

11 .mode = 0644 ,

12 . proc_handler = proc_dointvec ,

13 } ,

14 {

15 . procname = "tcp_divack_max_count" ,

16 . data = &sysctl_tcp_divack_max_count ,

17 . maxlen = s izeof ( int ) ,

18 .mode = 0644 ,

19 . proc_handler = proc_dointvec ,

20 } ,

21 {

22 . procname = " tcp_divack_contro l led " ,

23 . data = &sysct l_tcp_divack_contro l l ed ,

24 . maxlen = s izeof ( int ) ,

25 .mode = 0644 ,

26 . proc_handler = proc_dointvec ,

27 } ,

In the include/linux/sysctl.h �le, the system control interfaces are de�ned. We need to

add the sysctl variables via an enum. Open the �le:

1 mmmary@mmmary -laptop :/usr/src/linux \$ sudo gedit include/linux/sysctl.h

Add the following lines (428):

1 NET_TCP_divack = 126

2 NET_TCP_divack_count=127 ,

3 NET_TCP_divack_max_count=128 ,

4 NET_TCP_divack_controlled=129 ,

The variables need to be included to the bin_net_ipv4_table[ ] struct of the kernel/sysctl_binary.c

�le where the modi�cation function (CTL_INT for int variables), the sysctl just de�ned and

the procname are indicated.
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1 mmmary@mmmary -laptop :/usr/src/linux \$sudo gedit kernel/sysctl_binary.c

Add the following lines (421):

1 {CTL_INT, NET_TCP_divack , " tcp_divack" } ,

2 {CTL_INT, NET_TCP_divack_count , " tcp_divack_count" } ,

3 {CTL_INT, NET_TCP_divack_max_count , "tcp_divack_max_count" } ,

4 {CTL_INT, NET_TCP_divack_controlled , " tcp_divack_contro l led " } ,

Finally the sysctl variables must be added (as external) to the rest of the sysctl TCP variables.

1 mmmary@mmmary -laptop :/usr/src/linux \$ sudo gedit include/net/tcp.h

Add the following lines (250):

1 extern int sysct l_tcp_divack ;

2 extern int sysctl_tcp_divack_count ;

3 extern int sysctl_tcp_divack_max_count ;

4 extern int sysct l_tcp_divack_contro l l ed ;

Now that the variables needed to execute the divacks mechanism are de�ned, we are able

to make the necessary changes to send the divacks.

6.3.1.2 Sending Divided acknowledgements

The divacks mechanism is implemented in the __tcp_ack_snd_check() function, where

we must decide if a new ack (and divacks if enabled) needs to be sent or wait for a delayed

ack. The ack_sequence_number will be saved in the rcv_nxt_original variable and it won't

send it right away, sysctl_tcp_divack will be subtracted and it will enter a loop where if the

ACK sequence number is smaller than rcv_nxt_original the acknowledge is sent and the

sequence number is incremented in one. Equation 6.1 presents the number of bytes that will

be acknowledged by the �rst divack.

FirstDivackBytesToAcknowledge = (packets size− sysctl_tcp_divack) bytes (6.1)

The next successive divacks are only going to acknowledge one byte from the packet until

sending the full-ACK that acknowledges the last byte of the packet. If the sysctl_tcp_divack

parameter is zero (0) the ACK sequence number won't be changed, the loop won't take place

and only the full-ACK will be sent (recognizing the whole packet). Once the loop is done,

there will have been sent as many divacks as indicated in the sysctl_tcp_divack parameter.

In Code 6.1, a pseudocode of the divacks mechanism is presented.
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1 /∗ __tcp_ack_snd_check ( ) func t i on sending d i vack s in the tcp c l i e n t s s i d e ∗/
2

3 rcv_nxt_orig inal = ack_sequence_number ;

4 ack_sequence_number =− sysct l_tcp_divack ;

5

6 while ( ack_sequence_number < rcv_nxt_or ig inal ) {

7 i f ( ( sy s c t l_tcp_cont ro l l ed &&

8 ( sysctl_tcp_divack_count < sysctl_tcp_divack_max_count ) )

9 | | ( ! sy s c t l_tcp_cont ro l l ed ) ) {

10

11 sendDivack ( ack_sequence_number ) ;

12 sysctl_tcp_divack_count++;

13 }

14 ack_sequence_number++;

15 }

16 sendFullAck ( ack_sequence_number ) ;

Code 6.1 Pseudocode: Sending divacks in the clients side
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6.3.1.3 Example: sending divacks iteration

A detailed example of a iteration on the code is presented. The number of divacks to

send per packet is set to three (tcp_divack = 3) and the algorithm chosen is brute force

(tcp_controlled = 0). A packet arrives and its sequence number is 1900 (value to acknowl-

edge). This are the steps that correspond to executing the code presented in Code 6.1:

1. ack_sequence_number = 2000

2. rcv_nxt_original = 2000

3. ack_sequence_number = 2000 - 3 = 1997

4. As (ack_sequence_number < rcv_nxt_original)

(a) As Brute Force algorithm is enabled

i. sendDivack(1997)

(b) ack_sequence_number = 1998

5. As (ack_sequence_number < rcv_nxt_original)

(a) As Brute Force algorithm is enabled

i. sendDivack(1998)

(b) ack_sequence_number = 1999

6. As (ack_sequence_number < rcv_nxt_original)

(a) As Brute Force algorithm is enabled

i. sendDivack(1999)

(b) ack_sequence_number = 2000

7. sendFullAck(2000)

To implement the divacks algorithm __tcp_ack_snd_check() function needs to be mod-

i�ed. Open the �le:

1 mmmary@mmmary -laptop :/usr/src/linux \$ sudo gedit net/ipv4/tcp_input.c

Add the following changes to implement the divacks mechanism:
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1 stat ic void __tcp_ack_snd_check ( struct sock ∗ sk , int o fo_pos s ib l e )

2 {

3 struct tcp_sock ∗ tp = tcp_sk ( sk ) ;

4 /∗ Divacks mechanism∗/
5 u32 rcv_nxt_orig inal = tp−>rcv_nxt ;

6

7 ∗ More than one f u l l frame r e c e i v ed . . . ∗/
8 i f ( ( ( tp−>rcv_nxt − tp−>rcv_wup) > inet_csk ( sk )−>icsk_ack . rcv_mss &&

9 /∗ . . . and r i g h t edge o f window advances f a r enough .

10 ∗ ( tcp_recvmsg () w i l l send ACK otherw i s e ) . Or . . .

11 ∗/
12 __tcp_select_window ( sk ) >= tp−>rcv_wnd) | |

13

14 /∗ We ACK each frame or . . . ∗/
15 tcp_in_quickack_mode ( sk ) | |

16 /∗ We have out o f order data . ∗/
17 ( o fo_pos s ib l e && skb_peek(&tp−>out_of_order_queue ) ) ) {

18

19 tp−>rcv_nxt −= sysct l_tcp_divack ;

20

21 /∗ sending d i vack s loop ∗/
22 while ( tp−>rcv_nxt < rcv_nxt_or ig ina l ) {

23

24 /∗ I f c on t r o l l e d , check the l im i t has not been reached be f o r e sending

d i vack s . I f not c o n t r o l l e d (= Brute Force ) , send d i vack s . ∗/
25 i f ( ( sysct l_tcp_divack_contro l l ed && ( sysctl_tcp_divack_count <

sysctl_tcp_divack_max_count ) )

26 | | ( ! sysct l_tcp_divack_contro l l ed ) ) {

27 tcp_send_ack ( sk ) ;

28 sysctl_tcp_divack_count++;

29 }

30 tp−>rcv_nxt++;

31 }

32 /∗ Send the f u l l ack ∗/
33 tcp_send_ack ( sk ) ;

34 } else {

35 /∗ Else , send de layed ack . ∗/
36 tcp_send_delayed_ack ( sk ) ;

37 }

38 }

Code 6.2 Modi�cations on the kernel to send divacks
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Another modi�cation has to be done. It will allow to send in the announced window

(rwnd) all the available space in the reception bu�er. To do so, the limitation that restricts

the available space that the client can announce, must be removed from the __tcp_select_window()

function to allow the divacks mechanism to work. variables. Open the �le:

1 mmmary@mmmary -laptop :/usr/src/linux \$ sudo gedit net/ipv4/tcp_output.c

And comment the following line (1910):

1 /∗ i f ( free_space > tp−>rcv_ss thresh )

2 f ree_space = tp−>rcv_ss thresh ; ∗/

6.3.2 Modi�cations in the servers side

The are some modi�cations that need to be done only in the kernel of the computer that

will be working as the divacks server. The divacks server will receive the divacks from the

client, and when this happens the cwnd is going to be updated. Since the Linux kernel is

protected against the divacks mechanism, we need that at the reception of divacks, the size

of the congestion window is actualized. Consequently, this behaviour must be enabled. We

will need to change the tcp_ack() function form the net/ipv4/tcp_input.c �le.

1 mmmary@mmmary -laptop :/usr/src/linux \$ sudo gedit net/ipv4/tcp_input.c

Comment the following validations:

1 i f ( tcp_ack_is_dubious ( sk , f l a g ) ) {

2 /∗ Advance CWND, i f s t a t e a l l ow s t h i s . ∗/
3 /∗ Divacks comment i f ( ( f l a g & FLAG_DATA_ACKED) && ! frto_cwnd &&∗/
4 i f ( ! frto_cwnd &&

5 tcp_may_raise_cwnd ( sk , f l a g ) )

6 tcp_cong_avoid ( sk , ack , p r i o r_ in_f l i gh t ) ;

7 t cp_fa s t r e t r an s_a l e r t ( sk , pr ior_packets − tp−>packets_out ,

8 f l a g ) ;

9 } else {

10 /∗ Divacks comment i f ( ( f l a g & FLAG_DATA_ACKED) && ! frto_cwnd ) ∗/
11 i f ( ! frto_cwnd )

12 tcp_cong_avoid ( sk , ack , p r i o r_ in_f l i gh t ) ;

13 }

Another validation that restricts the growth of the cwnd needs to be commented, as to allow

it's growth with each divack received. Modify the tcp_reno_cong_avoid() function from

the net/ipv4/tcp_cong.c �le.

1 mmmary@mmmary -laptop :/usr/src/linux \$ sudo gedit net/ipv4/tcp_cong.c
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Comment the following line:

1 void tcp_reno_cong_avoid ( struct sock ∗ sk , u32 ack , u32 i n_ f l i g h t )

2 {

3 struct tcp_sock ∗ tp = tcp_sk ( sk ) ;

4 /∗ Divacks comment

5 i f ( ! tcp_is_cwnd_limited ( sk , i n_ f l i g h t ) )

6 re turn ; ∗/

6.4 Compilation of the modi�ed kernel

The following steps should be executed in both computers, the client and server. The �rst

time the kernel is compiled, it will take a lot of time. To take advantage of the number of

processors the computer has the make command should include the -jn option, where n is

the number of processors. If the modi�ed kernel has a mistake, the system might not be able

to boot. If so, you just have to boot from the last working version available in the booting

list.

1 mmmary@mmmary -laptop :/usr/src/linux \$ sudo make -jn

After this step is done, we need to install the kernel modules.

1 mmmary@mmmary -laptop :/usr/src/linux \$ sudo make modules_install -jn

And we install the kernel.

1 mmmary@mmmary -laptop :/usr/src/linux \$ sudo make install

The boot �les need to be created, and since we are installing a Linux kernel v 2.6.35.7, we are

going to indicate so. If this command is run a second time, instead of -c (create) it should

be -u (update).

1 mmmary@mmmary -laptop :/usr/src/linux \$ cd ..

2 mmmary@mmmary -laptop :/usr/src/ \$ sudo update -initramfs -c -k 2.6.35.7

The modules will be installed in the /lib/modules/2.6.35.7 directory; the kernel and the

initrd �le, in the /boot/vimlinuz-2.6.35.7 and /boot/initrd.img-2.6.35.7 respectively. The

boot manager needs to be updated as to allow to choose the modi�ed kernel in the boot list.

1 mmmary@mmmary -laptop :/usr/src/ \$ sudo update -grub

The computer needs to be restarted.

1 mmmary@mmmary -laptop :/usr/src/ \$ sudo reboot
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6.5 Usage

Now that the divacks client and server are working, tests can be performed as to test the

behaviour of the mechanism. To do so, the sysctl kernel parameters (de�ned in section

6.3.1.1) can be modi�ed at runtime. To read the value of a variable, tcp_divack_max_count

in this example:

1 mmmary@mmmary -laptop :~\$ sudo sysctl net.ipv4.tcp_divack_max_count

And to modify this parameter, the following command can be used (it sets its value to 1500):

1 mmmary@mmmary -laptop :~\$ sudo sysctl -w net.ipv4.tcp_divack_max_count="1500"



Chapter 7

Experimentation

Tests were performed in Labo4g at TELECOM Bretagne to measure the divacks mechanism

e�ectiveness, the results obtained are presented in this chapter. In the �rst place, the testbed,

tools and con�guration used, are introduced. The in�uence of the di�erent variables that

play a role in the algorithm's output had been measured and quanti�ed in section 7.4. By

taking them into account, the values for which the algorithm presents a gain regarding the

default Linux mechanism were found. The di�erent variations of the divacks algorithm and

their behaviour on mobile environments are presented in sections 7.5 and 7.6 respectively.

Finally, conclusions are arisen in section 7.7.

7.1 Testbed con�guration

Firstly the divacks mechanism was implemented in two computers: one which is the divacks

client and a second one, the divacks server. The divacks client is a Asus-W5fe Sideshow

notebook (2.00 GHz Intel Core 2 Duo T7400 processor and 1 GB of RAM). The divacks

server is a Dell Latitude D410 notebook (1.86 GHz Intel Pentium M processor and 489

MB of RAM). Both computers have Ubuntu 10.04 and gcc version 4.4.3 installed. A 2.6.35.7

Linux kernel was downloaded, modi�ed (each one with its respective modi�cations), compiled

and deployed to both computers (see chapter 6: Implementation for more details). A third

computer, which we are going to call netem computer was used (3 GHz Intel Pentium 4

CPU processor and 992MB of RAM) as to emulate some network conditions, in our case

the RTT (Round Trip Time). An access point was also used in the deployment to provide

a wireless link where to preform handovers. This AP is a Linksys Wireless-G Broadband

Router, WRT54GL model (2.4 GHz, 64 Mbps).

45



46 Chapter 7 Experimentation

The network topology, presented in Fig. 7.1, consists on the two divacks computers:

the server "A" and the client "C", the netem one: "B" and the access point. The server

computer is connected to the netem computer via an Ethernet cable, and this computer is

also connected to the access point via a second Ethernet cable. The client connects via a

wireless link to the AP. In this testbed, the client "C" will be downloading data form the

server "A", and therefore, it will acknowledge every packet received with several divacks,

speeding up the transfer.

As to measure the speed of the di�erent interfaces, UDP tra�c was emulated with iperf

Figure 7.1 Testbed for divacks testing.

(see section 7.2). The results presented in Table 7.1, reveal that the bottleneck of the

transmission is in the wireless link of the topology, which allows to reach a speed of 16.2

Mbps.

Link Measured bandwidth

Server-Netem 100 Mbps

Netem-Client 19.5 Mbps

Server-Client 16.2 Mbps

Table 7.1 Testbed interfaces speed measured with iperf.
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7.2 Tools

Several tools were used in order to measure and con�gure the testbed; execute, measure and

obtain the results. The tools used are:

• iperf is a network testing tool that can create TCP and UDP data streams and

measure the throughput of a network that is carrying them. It was used to measure

the topology interfaces speeds.

Usage on the client's side:

1 mmmary@mmmary -laptop :~\$ iperf -c <<server\rq s address >> -u

Usage on the server's side:

1 mmmary@labo4g -desktop :~\$ iperf -s -u

• netem is a Network Emulation functionality for testing protocols, it emulates the

properties of wide area networks. Netem was used in the netem computer as to intro-

duce a delay in the network. Command used to introduce a delay of 250 ms in the

eth0 interface:

1 mmmary@mmmary -laptop :~\$ tc qdisc add dev eth0 root netem delay 250ms

• GNU wget is a computer program that allows to exchange �les between computers.

To do so, the server needs to have Apache HTTP Server installed as to work as a web

server. It was used to exchange �les between the divacks server and the divacks client.

To exchange testFile.txt , the following command needs to be run in the client's side:

1 mmmary@labo4g -desktop :~\$ sudo wget -0 file.txt http:// 192.168.11.10/ testFile.txt

• Wireshark is a free and open-source network protocol analyser for Unix and Windows.

It was used to sni� network tra�c and obtain detailed information on the exchanged

packets between the divacks client and server.

• TCP probe is a module that records the state of a TCP connection in response to

incoming packets. It was used in the server's side to capture the congestion window size

during the transmissions. In the server's side, before the transmission is established,

these commands need to be executed:
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1 mmmary@labo4g -desktop :~\$ sudo modprobe -r tcp_probe

2 mmmary@labo4g -desktop :~\$ sudo modprobe tcp_probe port =80 full=1

3 mmmary@labo4g -desktop :~\$ sudo chmod 444 /proc/net/tcpprobe

4 mmmary@labo4g -desktop :~\$ cat /proc/net/tcpprobe > ./ tcpprobe.txt &

5 mmmary@labo4g -desktop :~\$ TCPCAP =\$!

Once the transfer is �nished, to save and kill the capture, the following command needs

to be executed on the sever's side:

1 mmmary@labo4g -desktop :~\$ sudo kill \$TCPCAP

• R is a free software programming language and a software environment for statistical

computing and graphics. It was used to process and graph the results presented in the

following sections.

7.3 Testing conditions

To perform the following tests, some assumptions must be arisen:

• TCP will be used as a Transport layer protocol during the transfer.

• The client will be downloading data from the server.

• The handover will be a layer 2 hard horizontal handover.

• The TCP connection will not be interrupted by the handover.
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7.4 Factors that have an impact on the performance

In this section the factors that have an in�uence in the performance of the divacks mechanism

and the impact they have, are going to be presented. Even if the nature of these factors is

di�erent (some are related to the network con�guration and others, to TCP mechanisms)

they all have a measurable e�ect on the TCP transfer. These parameters are listed in Table

7.2 which also contains the used values to evaluate them.

Divacks mechanism's

con�guration parameters
Used Values

Number of divacks 0, 3, 6, 9, 12, 15

File size
500, 990 KB,

1, 2, 4 and 8 MB

Round Trip Time 10, 70, 125, 250 and 500 ms

Bu�er's Size
default, 4x default, 8x default

(see Table 7.6)

Algorithm Brute Force, Controlled

Handover FALSE, TRUE

Table 7.2 Parameters and its used values to test the divacks mechanism's perfor-

mance.

7.4.1 Number of Divacks

The number of divacks sent per received packet of data is probably one of the most im-

portant, if not the most, parameter because of its direct impact on the divacks mechanism

performance. It has also been called n in this document, and it is set via the tcp_divacks

system variable (see chapter 6: Implementation, section 6.4 Usage). To test the impact of

this parameter Test No. 1 was performed (see Table 7.3 for detailed information about the

con�guration) where only the number of divacks was changed, while the other parameters

remained constant. When incrementing the value of divacks sent per received packet, the

server receives a bigger amount of acknowledges, making its cwnd to grow in a more aggres-

sive fashion as can be seen in Fig. 7.2. Therefore, this growth makes the speed in which

the data packets are sent to increase, making the needed time to discover the new available

bandwidth shorter. In Fig. 7.3 the sequence number of the received data has been plotted

for all the di�erent value of divacks. Here we see the increasing the divacks number, makes



50 Chapter 7 Experimentation

Mechanism's

con�guration

parameters

Test 1:

Number of

divacks

Test 2:

Transfer's size

Test 3.1 and 3.2:

RTT

Test 4.1 and 4.2:

Bu�er's size

Number of divacks 0, 3, 6, 9, 12, 15 0, 12 0, 12 0, 12

File size 990 KB
500 KB,

1, 2, 4 and 8 MB

3.1: 990 KB

3.2: 500 KB,

1, 2, 4 and 8 MB

4.1: 990 KB

4.2: 500 KB,

1, 2, 4 and 8 MB

Round Trip Time 250 ms 250 ms

3.1: 10, 70, 125,

250 and 500 ms

3.2: 500 ms

250 ms

Bu�er's Size default default default
default, 4xdefault,

8xdefault

Algorithm Brute Force
Brute Force,

Controlled

3.1: Brute Force

3.2:Brute Force,

Controlled

4.1: Brute Force

4.2:Brute Force,

Controlled

Handover FALSE FALSE FALSE FALSE

Table 7.3 Con�guration used for the executed Tests 1-4:

The impact of the testing environment and divacks parameters on the algorithm's

performance

the transfer to speed up since the available bandwidth is discovered faster. But, as we can

see in the average presented in Table 7.4 (and also in Fig. 7.3), this has a limit: while using

n = 15, the performance is worse than when using n = 12.

Increasing the number of divacks does not assure that the divacks mechanism will

perform better (by making the transfer duration shorter) since there are other TCP factors

that need to be taken into account (see section 5.3: Ping Pong E�ect). From this results

we can assure that there is an optimal number of divacks which is between 7 and 14. The

number of divacks chosen to perform the following tests is 12, since not only it has shown a

shorter transfer time, but also is more stable (smaller standard deviation).

7.4.2 Size of the transfer

The amount of data packets that the server needs to send to the client, will in�uence on

the performance of the mechanism. Whenever the size of the �le transferred is increased,
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Figure 7.2 Test 1: Congestion window values for di�erent values of divacks sent.

Number of divacks
Average transfer

duration time (s)

Std of the transfer

duration time (s)

0 3.12 0.19

3 2.82 0.35

6 2.60 0.16

9 2.62 0.14

12 2.42 0.07

15 3.05 0.13

Table 7.4 Several runs of Test 1: Average transfer duration time per number of

divacks sent per packet received.

more packets need to be sent (because of Ethernet's MTU of 1500 bytes) and if the divacks

mechanism is enabled, specially the Brute Force variation, more divacks also are going to
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Figure 7.3 Test 1: Sequence number measured in the clients side for di�erent

values of divacks sent.

be sent. When this occurs, we have seen that the the transfer is limited because of the

ping pong e�ect. To clarify this, Test No. 2 was performed, where the size of the �le to be

transferred was variated between 500 KB and 2 MB (see Table 7.3 for more details on the

con�guration). There is a constraint regarding the size of the transfer as Fig. 7.4 shows.

In the presented topology, the transfers in which the performance of divacks overtakes the

default mechanism are those whose �le's size is roughly smaller than 1 MB. In the other

cases, the default TCP mechanism performs better by having a bigger throughput. For this

reason we have chosen to experience with, on most of the other tests with a �le of 990 KB.

This test also shades light to the fact that the divacks mechanism needs to be controlled.

In the case of the last transfer (with a �le of 8 MB), when using the Brute force algorithm and

sending 12 divacks per data packet, retransmissions can be observed. These retransmissions
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are due on the fact that sending divacks constantly, saturates the wireless link, which reduces

the throughput (seen as smaller slope).

Figure 7.4 Test 2: Sequence number measured in the clients side for di�erent sizes

of �les exchanged: 500 KB, 1, 2, 4 and 8 MB.
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7.4.3 Round Trip Time

The in�uence that the round trip time of the network has on the divacks performance has

already been presented in [2]. The delay that is present in the network, such as the �le

's size presented in the previous section, needs to be addressed. In Tests No. 3, the RTT

of the network was modi�ed while the throughput was evaluated. In test 3.1 the RTT

was changed between 10, 70, 125, 250 and 500 ms, while a 990 KB �le was transferred.

The output presented in 7.5 show that there is a crossing point under which the divacks

mechanism performs worse than the regular TCP. When RTT is 250 ms or larger, the Brute

Force divacks mechanism performs the transfer in a shorter time than the regular TCP

mechanism.

A second test was performed (Test No. 3.2) in which the RTT was set to 500 ms and

Algorithm Round Trip Time

10 ms 70 ms 125 ms 250 ms 500 ms

n = 0 1.4 1.7 1.89 3.28 25.08

n = 12, Brute Force 3.33 3.77 4.16 2.53 17.8

Table 7.5 Test 3.1: Transfer duration time for a 990 KB �le, while variating the

RTT.

the �le's size was variated. The results displayed in Fig. 7.5 indicate that, since there is a

bigger delay in the network, the limit in which the divacks mechanism starts loosing against

the default TCP one, is increased.

The RTT chosen to perform the majority of the tests is 250 ms, because as [2] shows,

when the value of RTT is higher than 100 ms, the divacks mechanism has more stable results

regarding its throughput. As has been said before, this RTT is valid as log as the �le being

transferred has a size which is less than 1 MB.

7.4.4 Divacks distribution

The divacks are sent whenever a data packet is received and the mechanism is enabled. As

we can see in Fig 7.6, the Controlled algorithm sends divacks in an aggressive way for the

�rst two RTTs, an then the divacks mechanism is disabled and the acknowledgements are

sent in the legacy TCP way. On the other hand, when the Brute Force algorithm is enabled,

divacks are sent all the time, which congests the link.
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Figure 7.5 Test 3.2: Sequence number measured in the clients side for di�erent

sizes of �les exchanged: 500 KB, 1, 2, 4 and 8 MB, when RTT = 500 ms.

7.4.5 Reception bu�er's size

The clients reception bu�er plays an important role in the performance of the divacks mech-

anism. This bu�er is opened for each TPC connection and it stores all incoming packets

before delivering them to the client. Therefore, if the bu�er's size is increased the amount

of packets that can be stored, and not discarded because of congestion, increases; increasing

the throughput of the transmission.

Linux includes a system variable, called net.ipv4.tcp_rmem that allows to modify the

value of the memory reception bu�er per connection. It has three values: minimum, default
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Figure 7.6 Test xxx: Divacks and full-acks speed by 0.1 s intervals.

and maximum size. The �rst value tells the kernel the minimum receive bu�er for each TCP

connection, and this bu�er is always allocated to a TCP socket, even under high pressure on

the system. The second value speci�ed tells the kernel the default receive bu�er allocated for

each TCP socket. The third and last value speci�ed in this variable indicates the maximum

reception bu�er that can be allocated for a TCP socket. The default values in the divacks

client are presented in Table 7.6, which also includes the bu�er's values used for testing.

Test No. 4, evaluates how the change on the reception bu�er's size impacts on the good-

Bu�er's size min default max

default size 4096 87380 3244032

4x default size 16384 349520 12976128

8x default size 32768 699040 25952256

Table 7.6 Test 4: Bu�ers'sizes (Bytes) used for testing.

put. Its con�guration is presented in Table 7.3. In test No. 4.1 a 990 KB �le was downloaded

by the divacks client. Observe the transfers performed in Fig. 7.7, here the throughput is

increased for the divacks mechanism, when the bu�er size is increased four or eight times it's

original value. Another way of measuring the gain is by calculating the throughput for the

interval [1, 2] ms, presented in Table 7.7. For the case in which the bu�er's grows form the

default value to 8x the default value, the divacks mechanism jumps for 4.10 to 5.67 Mbps.

It shows that the throughput is similar for both the 4x and the 8x default bu�er's size, and

therefore one of them should be chosen when running the divacks mechanism.
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A second test was performed (Test 4.2) in which the �le size were modi�ed and the

Figure 7.7 Test No. 4.1: Sequence number measured in the clients side for di�erent

reception bu�ers'sizes.

bu�er size set to four times it's default value. The result shows three things: on the �rst

place, that the limit size of the �le exchanged should be maintained under 1 MB so that the

divacks mechanism overtakes the TCP default mechanism. Secondly, that the retransmis-

sions present for the 8 MB �le when the bu�er size was the default one (see Test 2, Fig. 7.4)

when the divacks mechanism is functioning with the brute force variation, are not present

because the bu�er is now able to store the packets that before where lost. Finally, it seems

that for big �les (4 and 8 MB) the brute force algorithm has a better performance than the

controlled one.

As we have explained, whenever the size of the reception bu�er is increased, the size

of the rwnd increases. A bigger receiver's announced window (rwnd) also alters the delayed
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Con�guration
Bytes received

by t = 1 s

Bytes received

by t = 2 s
Throughput (Mbps)

n = 0,

default bu�er
4344 131768 0.97

n = 12,

default bu�er
63746 602402 4.10

n = 12,

4x default bu�er
209994 945578 5.61

n = 12,

8x default bu�er
171690 915474 5.67

Table 7.7 Test 4.1: Transfer throughput between 1 and 2 s for di�erent reception

bu�ers'sizes.

acknowledgements behaviour. Observe in Fig. 7.9 that whenever the receiver bu�er's size

increases, the frequency of the ACKs becomes closer to 1 ACK per data packet, although it

is set to 1 ACK per data packet. This is due to the induced delay of ACKs in the receiver,

by the long backlog produced by divacks in the receiver interface. This backlog is making

the receiver to trigger more frequently the delayed ACKs timer to generate the following

ACK faster.

7.4.6 Receiver's announced window (rwnd)

As already explained in section 3.2, the amount of data packets that the server is going

to send to the client during the slow start algorithm, will depend on Equation 3.4. Since

the value of the receiver's announced window will a�ect the transmission output, this topic

needs to be addressed with attention. As the size of rwnd is determined by the size of the

reception bu�er and the transfer speed by itself, the value of this window was captured while

changing the size of the reception bu�er (Test 4.1).

The results in Fig.7.10 show how narrow the relationship between the rwnd and the

throughput is: the growth of the receiver's announced window allows the growth of the

throughput (plotted in Fig. 7.7). Again, the size of the reception bu�er modi�es the output,

via the size of the rwnd.

A more clear and global view of the way the divack mechanism works is going to be
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Figure 7.8 Test 4.2: Sequence number measured in the clients side for di�erent

reception bu�ers'and �les'sizes.

presented next. For Test 4.1 the values of both windows, cwnd and rwnd, were registered at

the end of each RTT. Also, the number of data packets transferred by RTT was calculated.

Four tests were performed: two with the default bu�er (n = 0 (Table 7.8) and n = 12 (Table

7.9)), one for 4x default bu�er (n = 12, Table 7.10) and 8x default bu�er (n = 12, Table

7.11). In all cases, when the divacks mechanism was enabled, the Brute Force variation was

used.

There are several conclusions that can be arisen from these four results.

1. The throughput is mainly limited by the rwnd. When the value of the cwnd

overtakes the value of the rwnd, because of Equation 3.6, the number of packets sent

by RTT is kept under the value of the rwnd. This happens during all the transfer (for

all the cases) but for the two �rst RTTs in which the cwnd is small (3 * 1448 for RTT
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Figure 7.9 Test xxx: CDF of the acknowledgements size distribution.

= 1 and 41 * 1448 for RTT = 2) and limits the output. Also, when increasing the

reception bu�er size (see next item) the throughput is increased: more packets are sent

in the �rsts RTTs when the bu�er size is bigger.

2. The size of rwnd depends on the reception bu�er sizeWhenever the size of the

reception bu�er is increased, the size of the receiver's announced window has a more

abrupt expansion. When divacks is enabled, for the default case, the rwnd grows from

it initial value (45 * 1448 bytes) to its maximum (439 * 1448 bytes) in eight RTTs.

Meanwhile, in the case when the bu�er is increased four times, it grows from 181 *

1448 bytes to 373 * 1448 bytes in six RTTs. This behaviour is even more steep when

the bu�er is eight times the default size: from 360 * 1448 bytes to 747 * 1448 bytes in

six RTTs.

3. The size of the cwnd when using divacks could be considered as in�nity.

When the transfer was performed with the default TCP mechanism, the largest cwnd

obtained was of 330 * 1448 bytes in RTT = 11. In this case, the value of cwnd is of the

same order of magnitude that rwnd. While, when the divacks mechanism is enabled,

the size of cwnd reaches 5014 * 1448 bytes for the default reception bu�er size, and

almost 5500 * 1448 bytes for 4x and 8x bu�er size.

4. The emission of data packets has a pattern. In all cases we can see that the

number of data packets received per RTT increases until a maximum is reached (at

RTT = 5 for the cases of divacks enabled), after which it starts decreasing.
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Figure 7.10 Test 4.1: Receiver's announced window (rwnd) measured in the clients

side for di�erent reception bu�ers'sizes.

5. The ping pong phenomenon inhibits the growth of the throughput. In Table

7.10, we can see that at the beginning of a new (and bigger) rwnd size, there is a

noticeable increase of the throughput. In RTT = 3, the amount of packets sent per

RTT grows from 42 to 101, and for RTT = 6, it grows from 97 to 144. However, before

experiencing a new rwnd increase, the throughput decreases abruptly (at RTT= 5 and

8). This is due to the ping-pong phenomenon on the WLAN access. There are bursts

of increasing throughput for which TCP does better depending on rwnd. Observing

Table 7.10, at the beginning of a bigger receiver's announced window (rwnd) there is

an noticeable increase of the throughput. This corresponds to the recently liberated

data packets by the sender, i.e., by passing from rwnd to 2*rwnd (see rwnd=180

to rwnd=383 SMSS). However, at the end of the transmission period, i.e., before

experiencing a new rwnd increase, the throughput decreases. This is due to the ping-
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pong e�ect on the WLAN access [4].
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RTT Time (s)
cwnd size

(*1448 bytes)

rwnd size

(*1448 bytes)

Packets sent

per interval

1 0.25 to 0.5 3 - 3

2 0.50 to 0.75 5 - 6

3 0.75 to 1 11 44 12

4 1 to 1.25 23 44 24

5 1.25 to 1.50 45 44 46

6 1.50 to 1.75 72 50 72

7 1.75 to 2 117 94 101

8 2 to 2.25 184 102 102

9 2.25 to 2.5 277 159 96

10 2.5 to 2.75 330 210 210

11 3 to end 330 289 28

Table 7.8 Test 4: Cwnd, rwnd, and throughput for the transfer of a �le while using

default bu�er and n = 0.

RTT Time (s)
cwnd size

(*1448 bytes)

rwnd size

(*1448 bytes)

Packets sent

per interval

1 0.25 to 0.5 3 45 3

2 0.50 to 0.75 41 44 41

3 0.75 to 1 287 45 45

4 1 to 1.25 635 108 108

5 1.25 to 1.50 1376 108 91

6 1.50 to 1.75 2214 212 126

7 1.75 to 2 3178 218 142

8 2 to 2.25 3995 439 75

9 2.25 to end 5014 439 67

Table 7.9 Test 4: Cwnd, rwnd, and throughput for the transfer of a �le while using

default bu�er and n = 12 (Brute Force).
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RTT Time (s)
cwnd size

(*1448 bytes)

rwnd size

(*1448 bytes)

Packets sent

per interval

1 0.25 to 0.5 3 181 3

2 0.50 to 0.75 41 178 42

3 0.75 to 1 587 180 101

4 1 to 1.25 1513 180 131

5 1.25 to 1.50 2422 180 97

6 1.50 to 1.75 3578 373 144

7 1.75 to 2 4540 373 136

8 2 to 2.25 5437 373 47

9 2.25 to end 5492 373 0

Table 7.10 Test 4: Cwnd, rwnd, and throughput for the transfer of a �le while

using 4x default bu�er and n = 12 (Brute Force).

RTT Time (s)
cwnd size

(*1448 bytes)

rwnd size

(*1448 bytes)

Packets sent

per interval

1 0.25 to 0.5 3 - 3

2 0.50 to 0.75 41 - 42

3 0.75 to 1 587 362 75

4 1 to 1.25 1484 361 135

5 1.25 to 1.50 2487 361 214

6 1.50 to 1.75 2988 361 82

7 1.75 to 2 4061 362 83

8 2 to 2.25 5137 747 68

9 2.25 to end 5453 748 0

Table 7.11 Test 4.1: Cwnd, rwnd, and throughput for the transfer of a �le while

using 8x default bu�erand n = 12 (Brute Force).
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7.5 Evaluating the di�erent divacks algorithms

As presented in section 5.2, two variants of the divacks mechanism have been implemented:

the Brute Force and the Controlled algorithm. In the �rst case, divacks are sent as

long as the slow start strategy (presented in section 3.2) is being executed. In the sec-

ond case, divacks are sent until the number of divacks sent reaches a threshold set in the

tcp_divack_max_count system control variable.

The con�guration used to execute the tests presented in this section, is presented in

Mechanism

con�guration parameters
Testing Values

Number of divacks 0, 12

File size 990 KB

Round Trip Time 250 ms

Bu�er's Size default

Algorithm Brute Force, Controlled

Controlled threshold 1500 divacks

Handover FALSE

Table 7.12 Values used to test the variants of the divacks mechanism: Bute Force

and Controlled divacks.

Table 7.12. Three tests were preformed in which a �le was exchanged: divacks disabled,

divacks enabled with n = 12: one with the brute force algorithm enabled and another one

with the controlled one. The sequence number of the data transferred is plotted in Fig.

7.11, which shows that the controlled algorithm has a better performance. There are three

reasons why. First, even if both divacks variants overtake the throughput of the default TCP

mechanism (the transfers are �nished in a shorter period of time), Table 7.13 (where the

duration of a transfer has been measured for several iterations of this test) shows not only

that the duration of the transfer for the Controlled algorithm is in average smaller but also

it's standard deviation is limited. The second reason why the Controlled variant is chosen

over the Brute Force, is that in the last case, the ping pong e�ect is larger. Since divacks

are going to be sent all the time when using the Brute Force algorithm, the wireless link

will end up congested and the throughput will be reduced. The e�ect can be appreciated

in Fig. 7.11, in which for n = 12 Brute force algorithm, the transfer speed between 2.2 and

2.6 s is substantially reduced (the slope has a valley). Finally, as Fig. 7.4 has shown, the
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nature of the Brute Force algorithm not only makes the throughput to be reduced but also

might introduce retransmissions; which, in a long term, derive in a worse performance than

if divacks was not enabled.

Figure 7.11 Variation of divacks Mechanism: Brute Force and Controlled.

Sequence number measured in the clients side.
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Con�guration
Average transmission

time (s)

Std transmission

time (s)

n = 0 3.12 0.19

n = 12,

Brute Force
2.49 0.07

n = 12,

Controlled
2.35 0.05

Table 7.13 Testing the divacks variations: Transmission duration for the Brute

Force and the Controlled algorithm.
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7.6 Evaluating the divacks mechanism

on a mobile environment

Using the knowledge gained with the tests presented in the previous sections, the divacks

mechanism (and its variations) is going to be tested in a mobile environment where layer

2 handovers are emulated. To do so, the same deployment was used and the mobility

was emulated by connecting and disconnecting the wireless divacks client to the AP. The

duration of the handover latency (see de�nition in section 2.4.2) is not being addressed in

this document.

The con�guration chosen to perform the mobility tests is presented in Table 7.14. The

Mechanism

con�guration parameters
Testing Values

Number of divacks 0, 12

File size 990 KB

Round Trip Time 250 ms

Bu�er's Size default and 4x default

Algorithm Brute Force, Controlled

Handover TRUE

Table 7.14 Values to test the divacks mechanism on a mobile environment.

values chosen are the ones that optimize the divacks performance in the already presented

testbed. The transfer was performed three times: one with the divacks mechanism disabled,

and two with twelve number of divacks per data packet: one with the Brute Force algorithm

enabled and another one with the controlled one. In Fig. 7.12 the results of exchanging a 990

KB �le while a handover was emulated, is presented. In this �gure it can be observed how

both divacks mechanisms overtake the default TCP goodput before the handover takes place.

After the handover occurs, while the new available rate is being discovered, retransmissions

take place in the case of the Brute Force algorithm; a behaviour already presented in the

previous section but more distinguishable in this test. In Table 7.15 the throughput obtained

before and after the handover was computed. As expected, when the divacks mechanism is

executed in a controlled fashion, it overtakes the default TCP behaviour not only before a

handover occurs (default: 0.86 Mbps, divacks: 1.38 Mbps) but also afterwards (default: 0.23

Mbps, divacks: 0.90 Mbps).
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A second test was performed, in the same way but with the reception bu�er size

Figure 7.12 Mobility test: Sequence number measured in the clients side for a

mobile test with default reception bu�er size.

Con�guration
Throughput (Mbps)

before handover

Throughput (Mbps)

after handover

n = 0 0.86 0.23

n = 12, BF 1.34 0.18

n = 12, C 1.38 0.90

Table 7.15 Mobility test: Transfer throughput with default reception bu�er size.

incremented four times. As Fig. 7.13 shows, results are similar for those obtained with the

default size: the throughput before the handover is larger when divacks is enabled; except

for the behaviour after the handover: (1)the retransmissions in the Brute Force algorithm
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Figure 7.13 Mobility test: Sequence number measured in the clients side for a

mobile test with 4x default bu�er size.

are reduced since the bu�er is able to reduce the impact of so many packets being sent at

the same time in the wireless link and (2) the throughput of the Controlled algorithm and

the TCP default mechanism is roughly di�erent.
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7.7 Discussion

Once all the factors that a�ect the divacks mechanism's performance were addressed and

evaluated, the better way in which they should be combined was found. Only after, we were

able to test the mechanism in a mobile environment.

The divacks mechanism success over the TCP default mechanism is evident. Its better

performance is only true if some cautions are taken. First, as sending divacks not only makes

the data tra�c to increase but also increases the acknowledgement packets, the maximum

number of divacks that should be sent as not to congest the wireless link is twelve. If a larger

number if chosen, the performance is worse. On the same direction, the size of the �le to be

transferred and the RTT of the network set a threshold under which the divacks mechanism

under performs. The transfer should be smaller than 1 MB when the RTT is set between

250 and 500 ms.

The impact that the receivers bu�er size has on the throughput is important due to two

main reasons:

• We have seen that whenever this size is incremented, the rwnd grows, allowing more

data packets to be sent per RTT. Therefore the transfer is �nished before, in opposition

to using the default bu�er's size.

• Since the bu�er allows packets to be stored to be delivered, the ping pong e�ect is

decreased.

Tests performed in a mobile environment were presented in section 7.6. In this case, results

are similar to those when handovers did not take place. These results make even more clear

the necessity of limiting the number of divacks sent per data packet towards to avoid con-

gestion.

The need of a controlled algorithm is essential for the divacks mechanism to work. With-

out a controlled emission of the divacks, the gain obtained with the mechanism is lost because

the data packets have to share the available bandwidth in the wireless link with unnecessary

tra�c generated by too many divacks. On the other hand, the controlled mechanism not

only has a better performance but it also remains stable while avoiding retransmissions,

which are present in the Brute Force algorithm.
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Chapter 8

Conclusions

The discovery of the available bandwidth in a new connection is handled by the slow start

TCP algorithm. Even if this process, allows the congestion window to grow in an exponential

fashion, this is not enough after a handover has taken place. In a mobile environment, the

interruption in the data transfer needs to be as unnoticeable as possible so that the mobility

is sensed as seamless for the user.

We have performed a study on how the TCP mechanisms work and how handovers im-

pact on the ongoing transfer. In section 2.5.2.1 we performed tests that show that the data

transmission is severely a�ected by the interruptions introduced by handovers.

The second goal was to implement a fast-ramp up mechanism that takes advantage on

how TCP works in a linux kernel. To accomplish this, the Divacks mechanism presented

in [2], was chosen. The Divacks mechanism divides a data acknowledgement in several ones.

By doing so, it forces the congestion window at the server's side to increase (see Fig. 7.2),

action that allows more data packets to be sent. Two variations to the method are proposed:

Brute Force and Controlled algorithms. The �rst one is an aggressive solution that sends

divacks as long as the connection is in slow start state. The second one, restricts the total

amount of divacks sent.

Tests were preformed as to evaluate how the di�erent factors (of the deployment and

the algorithm) a�ect the performance of the mechanism. Files were exchanged between the

divacks server and the divacks client, through a wired-wireless network. The number of di-

vacks sent per data packet was variated from none to �fteen, where an optimal value was

found: twelve. This happens because increasing the number of divacks does not imply that

73
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the rate of the data transmission is going to be increased. There is a limit set by the Ping

Pong e�ect, which takes place in the wireless link, where CSMA CA handles the medium.

In this protocol, the link is shared within both wireless actors. Therefore, they take turns in

a ping pong fashion, to send data segments and acknowledgements.

Results show that a transfer when the Divacks mechanism is enabled, reaches a through-

put of 4.1 Mbps (with n = 12), while the default TCP mechanism roughly reaches 1 Mbps.

Some factors regarding the con�guration of the network have been also evaluated. The

size of the transfer and the RTT of the network also a�ect the way in which divacks works.

The size of the transfer should be 990 KB or smaller when the RTT is 250 ms; and when

the RTT is doubled, the �le size can grow up to 2 MB. Over these limits, the Divacks mech-

anisms is overtaken by the default TCP mechanism.

The reception's bu�er size, which stores all incoming data packets before delivering to

the client, also plays an important role in the performance of Divacks. When the bu�er

is increased four or eight times, the throughput reaches 5.6 Mbps. The in�uence that the

bu�er has on the throughput is explained through the relationship it has with the size of

the receiver's announced window. TCP slow start sending rate is limited by the minimum

value between cwnd and rwnd. By the send of Divacks, the value of cwnd grows in a way

in which can be considered as in�nity if we compare it to the value of rwnd. Therefore, the

throughput is limited by the size of rwnd. We have measured it rq s size while the bu�er is

incremented, and we have seen that rwnd grows, pushing the limit of the maximum amount

of data that the sender can send, further away. Also, by increasing the bu�er's size, the Ping

Pong e�ect is reduced.

Tests performed in a mobile environment were executed. They show that the Divacks

controlled mechanism not only overtakes the TCP default mechanism before the handover,

but also after the transmission is reestablished, with a throughput four times bigger. These

results make even more clear the necessity of limiting the number of divacks sent per data

packet towards to avoid congestion, present when the Brute Force variation is executed.

The need of a controlled algorithm is essential to make the divacks mechanism overtake

the performance of the default TCP mechanism. Without a controlled emission of the di-

vacks, the gain obtained is lost due to the fact that the data packets have to share the

available bandwidth with unnecessary tra�c generated by too many divacks. On the other
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hand, the controlled mechanism not only has a better performance but it also remains stable

while avoiding retransmissions, which are present in the Brute Force algorithm.
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