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RESUMO

ABSTRACT

ANALYSIS OF STATISTICAL INTERPOLATION METHODS TO GENERATE THE VELOCITIES 
MODEL FOR CONTINENTAL ECUADOR FROM GNSS DATA. pp. 22-35

Realizamos una comparación entre los métodos de interpolación de Kriging y Colocación de 
Mínimos Cuadrados. Así se obtuvo un modelo de velocidad óptimo de la corteza terrestre para 
el Ecuador continental a partir de un campo de velocidad ITRF2008 obtenido con datos GNSS 
en el período 2008-2014. El mejor ajuste para los dos componentes fueron el semivariograma 
esférico y estable. Ecl modelo funcional para el método de colocación de mínimos cuadrados 
fue de tercer orden para el componente Este y de segundo orden para el componente Norte. 
Los resultados obtenidos se compararon con la velocidad de las estaciones GNSS utilizadas para 
la veri  cación y utilizando la técnica de validación cruzada. Todas las estadísticas favorecen el 
método de Colocación de Mínimos Cuadrados, ya que presenta un mejor ajuste y con  abilidad 
para representar el modelo de velocidad del Ecuador continental.
PALABRAS CLAVE: Kriging; colocación de mínimos cuadrados; validación cruzada; 
semivariogramas; modelo de velocidades.

Realizou-se uma comparação entre os métodos de interpolação de Kriging e Colocação de 
Mínimos Quadrados. Isso permitiu obter um modelo de velocidade ótima da crosta terrestre 
para o Ecuador continental a partir de um campo de velocidade ITRF2008 obtido com dados 
GNSS no período 2008-2014. Os semivariogramas com melhor ajuste para os dois componentes 
foram o semivariograma esférico e estável. O modelo funcional para o método de Colocação dos 
Mínimos Quadrados foi de terceira ordem para a componente Leste e de segunda ordem para 
a componente Norte. Os resultados foram comparados com a velocidade das estações GNSS 
utilizadas para veri  cação e empregando a técnica de validação cruzada. Todas as estatísticas 
favorecem o método de Colocação dos Mínimos Quadrados, toda vez que apresenta um melhor 
ajuste e con  abilidade para representar o modelo de velocidade do Ecuador continental.
PALAVRAS-CHAVE: Kriging; Colocação de Mínimos Quadrados; validação cruzada; 
semivariogramas; modelo de velocidades.

We performed a comparison between the interpolation methods of Kriging and Least 
Squares Collocation. This allowed to obtain an optimal velocity model of the earth’s crust for 
continental Ecuador from a velocity  eld ITRF2008 obtained with GNSS data in the period 
2008-2014. The best  tting semivariograms for the two components were the Spherical and 
Stable semivariogram. The functional model for Least Squares Collocation method was of 
third order for the East component and of second order for the North component. The results 
obtained were compared with the velocity of the GNSS stations used for veri  cation and using 
the cross-validation technique. All the statistics favor the least squares Collocation method since 
it presents a better  t and reliability to represent the velocity model of continental Ecuador.
KEYWORDS: Kriging; least-squares collocation; cross-validation; semivariograms; velocities model. 
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1. Introduction
Global Navigation Satellite Systems (GNSS) use geocen-
tric reference system to position any point (Dow et al., 
2009: Pascual-Sánchez, 2007; Rajner & Liwosz, 2017). 
This causes the coordinates of  the point located on the 
earth’s surface and positioned at a certain epoch to chan-
ge over time due to the movement of  tectonic plates 
(Mather et al., 1979; Perez et al., 2003; Banko et al., 2020). 
Due to this movement, it is necessary to make correc-
tions in the corresponding coordinates, and for this the 
movement speed of  the point must be calculated (Denker 
et al., 2018; Gili et al., 2000; Yang & Qin, 2021). There 
are velocity models used worldwide but for the American 
continent, Drewes & Heidbach (2005) presented the fi rst 
crustal velocity model for South America, named VE-
MOS (Velocity Model of  South America), which was ob-
tained from geodetic observations conducted throughout 
the region (Sánchez et al., 2018; Da Silva et al., 2018; Mon-
tecino et al., 2017).

Currently, Sánchez & Drewes (2020) present the VE-
MOS 2017 velocity model, using the Least Squares Pla-
cement method, while Cisneros & Nocquet (2011) obtai-
ned the fi rst velocity fi eld for Ecuador. From this velocity 
fi eld, Tierra (2016) presented the fi rst model of  velocities 
of  the Earth’s crust at a national level using the artifi cial 
neural networks method through supervised learning. La-
ter Luna et al. (2017) presented a velocity model for Ecua-
dor using the Universal Kriging method.

The velocity model to be obtained in this study must 
consider their spatial variations, therefore a totally deter-
ministic solution to our problem would not be the most 
convenient (Webster & Oliver, 2007). Probabilistic me-
thods, in addition to considering spatial proximity, also 
consider the existence of  spatial autocorrelations be-
tween the sampled points, and from this they deduce that 
these autocorrelations must be valid for the values of  the 
points to be estimated (Yan et al., 2021; Xie et al., 2017; 
Wilde et al., 2018).

Given that the factors that affect the values of  the ve-
locities are numerous, largely unknown in detail and inte-
ract with a complexity that we cannot unravel, it can be 
said that the results are affected by random errors. Since 
our objectives are predominantly to describe quantitati-
vely how the velocities vary spatially, as well as to estimate 
or predict their values in unsampled sites and to estimate 
the prediction errors in order to be able to judge what 
confi dence to place in them, models with a probabilistic 
and stochastic approach have been considered as best sui-
ted for our purpose. Considering that, two interpolation 

methods were selected, being the Kriging Estimation Me-
thod and the Least Squares Collocation Method (LSC). 
These methods will be used to make a comparison and 
suggest the most suitable for this study (Jiang et al., 2020; 
Ling et al., 2019; Yang & Cheng, 2020; Xiao et al., 2020; Fu 
et al., 2020; Zeng et al., 2019; Shapeev et al., 2019).

In order to calculate the velocity model for continental 
Ecuador, the velocity fi eld obtained from the processing 
and analysis of  the time series of  33 continuous moni-
toring stations of  the REGME network (Red GNSS de 
Monitoreo Continuo del Ecuador) is available (Luna et 
al., 2017). In addition, to having greater data coverage, 
131 speeds of  the passive stations of  the RENAGE ne-
twork (National GPS Network of  Ecuador) were used, 
obtained from the portal of  the Military Geographical 
Institute of  Ecuador (Cisneros & Nocquet, 2011).

2. Methodology
For the Kriging estimation, the Universal Kriging techni-
que was used because the speeds of  the stations indicate 
a trend in the eastern and northern components (Michael 
et al., 2019; Shukla et al., 2020; Lin et al., 2018). Spherical 
and stable semivariograms were used for the structural 
analysis (Obroślak & Dorozhynskyy, 2017; Verma et al., 
2018; Kesuma et al., 2019). The functional models selec-
ted for LSC prediction were chosen considering the best 
fi t and also that they are well conditioned (Erol & Erol, 
2021). The bad conditioning of  a system is induced by 
small variations in the values of  the matrices that inter-
vene in the adjustment, these variations would cause a 
small determinant and a large inverse matrix that would 
infl uence the inference of  the results (Sevilla, 1987). For 
the verifi cation, a set of  16 stations that did not enter into 
the determination of  the model were selected and com-
pared by cross-validation, which consists of  excluding the 
observation of  one of  the n sample points, and with the 
remaining n-1 values predicting the value of  the variable 
at the place of  the point that was excluded. We make a 
brief  explanation of  the methods to use.

2.1 Kriging
Estimation is the task for which geostatistics was initially 
developed and is called Kriging, in honor of  D. G. Krige 
(1951). It was further developed by Matheron (1971), e.g., 
Blais (1982), Journel and Huijbregts (1991), Reguzzoni 
et al. (2005). The Kriging estimator is a linear estimator 
given that the predicted value is obtained as a linear com-
bination of  known values (Matheron, 1971), it is also ba-
sed on the principle of  least squares, which is why some 
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authors (Cressie, 1993) also defi ne it as optimal predictor 
or best linear predictor. Different types of  Kriging are 
applied depending on the properties of  the stochastic 
process or the random fi eld. The Kriging method, which 
is based on the theory of  regionalized variables (Journel 
& Huijbregts, 1978; Goovaerts, 1997), is increasingly used 
because it allows capitalizing the spatial correlation be-
tween neighboring observations to predict attribute va-
lues at unsampled locations (Oreajuela et al., 2021).

2.1.1 Exploratory data analysis
Once the continuous monitoring stations have been se-
lected for modeling, the exploratory data analysis is per-
formed using descriptive statistics such as: mean, standard 
error, median, standard deviation, variance, coeffi cient of  
skewness and box plots. The variability of  the data allows, 
at a fi rst glance, to determine which ones will have a lower 
prediction error (Webster & Oliver, 2007). This analysis 
is important in order to determine outliers and establish 
whether some assumptions of  geostatistical theory are 
valid or to defi ne which prediction procedure is the most 
convenient to use.

The identifi cation of  atypical velocity values is consi-
dered important within geostatistical analysis given that 
there are certain models used that are very sensitive to 
these values (Webster & Oliver, 2007; Lobo & Fonseca, 
2020), therefore, special care needs to be taken in predic-
tions performed near these points. Hereby, a fundamental 
graph is the scatter plot both for detecting relationships 
between variables and for identifying trends, since this 
would be one of  the conditions that would determine the 
Kriging method to be used (FIGURE. 1).

The scatter plots with respect to the longitude and 
latitude coordinates allows to appreciate a trend of  the 
velocity in the East and North components along these 
directions. This dispersion determines that its average va-
lue is not constant throughout the region, therefore the 
most appropriate technique is Universal Kriging since it 
recognizes the non-stationary deterministic and random 
components in a variable. This technique estimates the 
trend in the former and the latter’s variogram and recom-
bines the two for prediction.

2.1.2 Structural analysis
Since geostatistics treats a set of  spatial data as a sample 
from performing a random process, the analysis needs to 
include spatial correlation. If  the phenomenon fulfi lls the 
stationarity assumption, any of  the three spatial corre-
lation functions may be used, being variogram or semi-
variogram, covariogram, and correlogram. However, in 
practice the semivariogram is more often used  as it is not 
necessary to perform an estimation of  parameters as in 
the case of  the other functions (Webster & Oliver, 2007).
The semivariogram is expressed with the following equa-
tion:

Where Z(x) is the value of  the variable at position x, 
Z(x + h) is another sample value separated from the pre-
vious one by a distance h, and n is the number of  pairs 
that are separated by the given distance (Webster & Oli-
ver, 2007).

The experimental semivariogram is obtained through 
the calculation of  the semivariance functions for various 
values of  h. Due to the irregularity of  the sampling and 
the distance of  the sampled sites, intervals of  {(0, h], (h, 
2h], (2h, 3h],…}) are determined to obtain the experi-
mental semivariogram. From this semivariogram we ob-
tain the average of  the distances for each interval with its 
corresponding semivariance value. Defi ning the value of  
h is able to affect the resulting semivariogram, therefore 
this value should be chosen carefully. If  the h value is 
low, then there may be few comparisons in each interval, 
leading to an experimental semivariogram that appears 
erratic. If, on the other hand, the h value is high, then it 
is likely that there are few estimate values and the detail 
is lost.FIGURE 1. Scatter plot of velocity values with respect to geographic 

coordinates. a) East component, b) North component
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Given that our data are present in a spatially irregu-
lar distribution, we used the criterion of  Johnston et al. 
(2001) where it has been indicated an average distance h 
determined by the equation:

Where A is the research area and n is the number of  
measured points.

The distance h can also be determined empirically as 
the minimum mean distance between observed points.

Where n is the number of  measured points.
As will be explained and indicated later, in order to solve 

the prediction problem, it is necessary to know the corre-
lation structure of  the data for any distance between the 
different points within the study area. The experimental 
semivariogram has only been obtained for some averages 
of  distances, so if  we require its value for any distance, it is 
necessary to have a theoretical model of  semivariance that 
fi ts the experimental semivariogram as closely as possible, 
which is obtained with the sample data. All semivariogram 
models have three common parameters which are nug-
get (C0), sill (C1), and range (a), as illustrated in FIGURE 2.

 

The nugget effect is the punctual discontinuity at the 
origin and is produced by measurement errors in the va-
riable or at its scale. This value should not exceed 50% 
of  the sill value. The sill represents the upper bound of  
the semivariogram and the range represents the distance 
from which two observations are independent. For geos-
tatistical approaches to be effective, the spatial correla-

tion range for a given variable (defi ned by the variogram) 
needs to be greater than the average distance between the 
sample points. Otherwise, Kriging will only provide a ro-
bust estimate in the local neighborhood of  each of  the 
data points in the training sample (Scull et al., 2005). The 
experimental semivariogram has only been obtained for 
some distances averages, therefore it is necessary to have 
a theoretical semivariace model that best fi ts, considering 
for this purpose the models recommended by Webster & 
Oliver (2007). These semivariogram models are theoreti-
cally well founded, which needs to be adapted to the ex-
perimental values and select the most appropriate model.

2.1.3 Prediction
Universal Kriging proposes that the value of  the variable 
can be predicted as a linear combination of  the n random 
variables like this:

Where Z(xi) are the measured values and λi are the 
weights of  the original values.

When the data are characterized by presenting a trend, 
it is common to decompose the variable Z(x) as the sum 
of  the trend, treated as a deterministic function, plus 
a stationary random component with zero mean. That 
means:

With E(ε(x))=0, V(ε(x))=σ2 therefore  E (Z(x))=m(x).
The trend may be expressed by:

Where the deterministic functions fi (x) are known and 
p is the number of  terms used to fi t m(x).

In order to obtain the weights, the variance of  the pre-
diction error must be minimized with the condition of  
unbiased (sum of  weights equal to 1) resulting in a system 
of  equations that in the matrix form results:

FIGURE 2. Parameters of a theoretical semivariogram model [5]. The solid 
red line represents the theoretical semivariogram, while the blue dots 

represent the experimental semivariogram
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The prediction variance of  Universal Kriging is ex-
pressed by [15]:

2.2 Least Squares Collocation (LSC)
The LSC is an interpolation method derived from geode-
tic sciences, which has been fi rst introduced by H. Moritz 
(1978), in order to determine the shape of  the earth and 
the gravitational fi eld. The LSC method can be interpre-
ted as a statistical estimation method that combines least 
squares fi t and least squares prediction. LSC is widely 
used in Geodesy and related fi elds as demonstrated by 
various classical studies (Krarup, 1969; Moritz, 1978; Ts-
cherning, 1976; Rummel, 1976; Kearsley, 1977; Moritz, 
1980; Dermanis, 1980; Knudsen, 1987; Forsberg, 1987; 
Schaffrin, 1989). It constitutes a very general case of  least 
squares. This technique combines adjustment, fi ltering, 
and prediction (FIGURE. 3), and in this sense generalizes the 
adjustment problem (Sevilla, 1987).

FIGURE 3. PLeast Squares Collocation Model (LSC). The blue points 
correspond to the measured values. This measure is composed of signal 

and noise. The green line is the functional model obtained by linear 
regression and the red line is the function determined by regression once 

the measurements have been fi ltered

2.2.1 Functional model
In the functional model with LSC, in addition to the pa-
rameters and the observation errors, the random part of  
mathematical expectation equal to zero is included, which 

are the noise and the signal. The model is expressed as:
 

Where X is the vector of  the corrections of  the model 
parameters, A is the design or coeffi cient matrix of  the 
model, fi (x)  is the vector of  the approximate observa-
tions and V are the observation errors. V is defi ned as 
follows:

Where r is the random measurement error which is 
defi ned as noise, and s is called signal and is the other 
random part of  the fi eld where the experiment is carried 
out, independent of  the measurement method and equi-
pment (Moritz, 1980).

The solution is obtained by the method of  least squa-
res using the equation:

Where P are the weights of the observations.

2.2.2 Stochastic model
The stochastic model is used in the fi t in order to intro-
duce information about the quality of  the observations 
and the possible correlation between them (Leick, 1995). 
This is done using the variance-covariance matrix of  the 
observations.

The variance - covariance matrix is given by:

The covariance matrix of the observations can be de-
composed into covariances of the signals and noises:

This covariance matrix corresponds only to values in 
the sampled sites; therefore, a covariance function must 
be determined for any point within the study area, called 
empirical covariance. For this reason, a specifi c polyno-
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mial type function is obtained using least squares (FIGURE. 

4). The correlation length is similar to the range in the 
Kriging method (Odera et al., 2012).

The resulting function is used to determine the C
zs
 ma-

trix of  the points at which the prediction is to be made, 
this means, calculate C(dz).

Finally, the covariance matrix of  the observations is 
expressed as:

In matrix form is written as:

2.2.3 Prediction
In this case, the solution of  the parameters is similar to 
the one calculated with least squares given in equation 
(11), where instead of  using the weight matrix the empi-
rical covariance matrix is used.

The signals for the observations are calculated with:

Similarly, the signals can be estimated for any other un-
observed point:

With these signals, the fi ltering is performed at the 
original n observation points by applying the following 
equation:

In the new observations L
s
, the observation errors no 

longer appear because the fi ltering has been performed, 
and it allows to calculate a new vector that we will call 
L

LSC
. For the prediction at the unsampled points, the va-

lues of  the z signal, determined in equation (18), are used, 
the values of  the parameters adjusted by means of  XLSC 
least squared placement, obtained in equation (16).

Where B is the design or coeffi cient matrix of  the mo-
del corresponding to the points to be predicted and L

0z
 

is the vector of  approximate observations of  these given 
points.

The prediction variance of  is given by Ligas & Kullc-
zycki (2010):

Where C(0) is the covariance when the distance d=0, 
that is, at the same point, C is the covariance matrix be-
tween the observed values and c is the vector of  covarian-
ces between the observed and unobserved values. 

3. Results and discussion
Before obtaining velocities, it is necessary to determine 
the value of  h (lag), which will serve to determine the 
experimental semivariogram and the empirical covariance 
in the two methods studied. The values 0.4 ° and 0.3 ° 
obtained from (2) and (3) respectively were used. The-
se values serve as a starting point to obtain h where the 
number of  pairs is more representative for all intervals. 
That is, there are no intervals where the number of  pairs 
is too small and others with very high values. As selection 
criterion for h, those in which the number of  pairs has 
less dispersion were chosen. Table 1 lists the values of  
the dispersion of  the number of  pairs for each value of  h.

FIGURE 4. Empirical covariance. The blue points correspond to the 
average of the covariance values within each interval and the red line 

correspond to the functional model of the empirical covariance



VOLUMEN 64(1) 2023 ● ENERO-JUNIO

ANALYSIS OF STATISTICAL INTERPOLATION METHODS TO GENERATE THE VELOCITIES 
MODEL FOR CONTINENTAL ECUADOR FROM GNSS DATA. pp. 22-35

 TABLE 1. Variability of the number of pairs for each value of h

TABLE 1  indicates that for a value of  h = 0.37 there is 
greater uniformity in the number of  pairs for each inter-
val. With the velocities in the two components (Ve and 
Vn) of  the different stations, the purpose is to describe 
quantitatively how the velocities vary spatially and to es-
timate their values in unsampled sites using models that 
better fi t the behavior of  the movement of  the Earth’s 
crust in the study area. For this, the root mean square 
error (rms) and the prediction variance are considered 
for comparison. The results of  the proposed techniques 
are analyzed below.

3.1 Kriging
For the selection of  the theoretical semivariogram, among 
the different types of  models, those whose squared de-
viations with respect to the experimental semivariogram 
were the lowest were chosen. The spherical and stable 
semivariograms were chosen with the least variation, as 
listed in TABLE 2.

With these semivariograms, the prediction is perfor-
med and subsequently the verifi cation with the 16 selec-
ted points. The results are listed in TABLE 3.

According to the calculated rms values, it is evident 
that the lowest value corresponds to the spherical model 
for both components in the prediction of  the verifi cation 
points. In TABLE 4 we present the statistics obtained by 
applying cross-validation to the spherical and stable semi-
variogram models.

TABLE 2. Values of the parameters of the theoretical semivariograms with 
their respective mean square error

TABLE 3. Mean square error of the verifi cation points using 
the spherical and stable semivariogram models in its two components

TABLE 4. Statistical values for the spherical and stable models in their two 
components through cross validation

The rms values favor the spherical model for both 
components, however, it can be seen that the prediction 
variance in the Eastern component for the spherical mo-
del is very high, this is due to the fact that the fi t to the 
experimental semivariogram was less than the stable se-
mivariogram.

3.2 LSC
The selected functional models were considered taking 
into account the best fi t and that they are well conditio-
ned. TABLE 5 presents the mean square error values for the 
two components obtained from the verifi cation data.
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TABLE 5. Mean square error of validation for LSC

Next, TABLE 6 presents the statistics obtained from 
applying the cross-validation using LSC for the two 
components. 

TABLE 6. Statistical values for the LSC model in its two components from 
cross validation

The values indicate a great approximation in all the 
estimated points, which shows that the selection of  the 
functional models and the covariance function were the 
most appropriate.

3.3 Comparison
TABLE 7 lists the information of  the statistics obtained for 
each prediction technique. It is observed that in Kriging 
method, the theoretical semivariograms that best fi t the 
experimental semivariograms have a lower prediction va-
riance, but not a better estimate.

For the East component, the models obtained with 
spherical Kriging and LSC have better values in the pre-
diction of  the points with rms = 1.76 mm /year and rms 
= 1.70 mm/year respectively, compared to the stable mo-
del with rms = 2.01mm /year. However, its precision is 
better because it has a lower value in the prediction va-
riance. For the North component, the models obtained 
with spherical Kriging and LSC have better prediction 
values with rms = 1.81 mm/year and rms = 1.73 mm / 
year respectively, compared to the model obtained with 
stable Kriging that has rms = 2.44 mm / year. In this 
component, the models obtained with spherical Kriging 
and LSC have better accuracies with respect to the model 
obtained with stable Kriging. 

TABLE 8 indicates the results of  the three prediction te-
chniques by verifi cation using 16 speeds that were not 
considered in the models.

TABLE 8. Mean square errors obtained from the verifi cation data in the 
diff erent spatial prediction models

For the East component, the method that best perfor-
ms the prediction is the LSC method, while for the North 
component the best prediction corresponds to spherical 
Kriging, considering that the stations that served for ve-
rifi cation were randomly selected. Therefore, the method 
that best performs the prediction is the LSC, with small 
differences with Kriging with spherical semivariogram. 
These small differences are due to the fact that both 
methods follow the principle of  minimizing the varian-
ce of  the prediction error when the underlying function 
is considered as a second-order stochastic process with 
a known or estimated covariance function (Dermanis, 
1984). Odera et al (2012) consider that although LSC may 
be the preferred technique for combining data, including 
parameter estimation, Kriging is relatively less laborious, 
faster, and works quite well. Although the data in this 
study cover a maximum distance of  approximately 700 
km, Darbeheshti & Featherstone (2009) consider that the 
LSC technique has been better applied at local and global 
scales, while Kriging is implemented at local scales, for 
distances no greater of  100 km.

Summarizing, we may note some advantages of  the 
LSC method, such as it makes a better prediction accor-
ding to the comparison made with the values for verifi ca-

MARCO P. LUNA, ALEJANDRA STALLER, ALFONSO TIERRA, 
XAVIER MOLINA & THEOFILOS TOULKERIDIS 

TABLE 7. Statistical values for the diff erent techniques used in cross-
validation verifi cation
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