Revista Notas de Matemática
Vol.5(2), No. 279, 2009, pp. 29-35
http://www.saber.ula.ve/notasdematematica/
Comisión de Publicaciones
Departamento de Matemáticas
Facultad de Ciencias
Universidad de Los Andes

The Bishop Darboux Rotation axis of the Spacelike Curves with a Spacelike Principal Normal in Minkowski 3-Space

Murat Kemal Karacan and Bahaddin Bukcu

Abstract

The Bishop darboux rotation for Spacelike curves with a spacelike Principal Normal in Minkowski 3 -space E_{1}^{3} is decomposed into two simultaneous rotations. The axes of these simultaneous rotations are joined by a simple mechanism. One of these axes is a parallel of the tangent vector of the timelike curve, the direction of the other is the direction of the Bishop darboux vector of the Spacelike curves with a spacelike principal normal.

key words. Bishop Frame, Parallel transport frame, Bishop darboux vector, Bishop darboux rotation axis; Spacelike curves, Minkowski 3-Space

AMS(MOS) subject classifications. 53A04,53A35,53B30

1 Preliminaries

Let $I R^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}, x_{2}, x_{3} \in I R\right\}$ be a 3 -dimensional vector space, and let $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right)$ be two vectors in $I R^{3}$. The Lorentz scalar product of x and y is defined by

$$
\langle x, y\rangle_{L}=x_{1} y_{1}+x_{2} y_{2}-x_{3} y_{3},
$$

$I E_{1}^{3}=\left(R^{3},\langle x, y\rangle_{L}\right)$ is called 3-dimensional Lorentzian space, Minkowski 3-Space or 3- dimensional Semi-Euclidean space. The vector x in $I E_{1}^{3}$ is called a spacelike vector, null vector or a timelike vector if $\langle x, x\rangle_{L}>0$ or $x=0,\langle x, x\rangle_{L}=0$ or $\langle x, x\rangle_{L}<0$, respectively. For $x \in I E_{1}^{3}$, the norm of the vector x defined by $\|x\|_{L}=\sqrt{\left|\langle x, x\rangle_{L}\right|}$, and x is called a unit vector if $\|x\|_{L}=1$. For any $x, y \in I E_{1}^{3}$, Lorentzian vectoral product of x and y is defined by

$$
x \wedge_{L} y=\left(x_{2} y_{3}-x_{3} y_{2}, x_{1} y_{3}-x_{3} y_{1}, x_{1} y_{2}-x_{2} y_{1}\right)
$$

Denote by $\{T, N, B\}$ the moving Frenet frame along the curve α. Then T, N and B are the tangent, the principal normal and vector binormal of the curve α respectively. If α is a spacelike
curve with a spacelike principal normal, then this set of orthogonal unit vectors, known as the Frenet-Serret frame, have properties

$$
\begin{aligned}
& T^{\prime}=\kappa N, N^{\prime}=-\kappa T+\tau B, \quad B^{\prime}=\tau N \\
& \langle T, T\rangle_{L},\langle N, N\rangle_{L}=1,\langle B, B\rangle_{L}=-1
\end{aligned}
$$

[1].

2 Introduction

The Bishop frame or parallel transport frame is an alternative approach to defining a moving frame that is well defined even when the spacelike curve with a spacelike principal normal has vanishing second derivative.we can parallel transport an orthonormal frame along a spacelike curve with a spacelike principal normal curve simply by parallel transporting each component of the frame. The parallel transport frame is based on the observation that, while $T(s)$ for a given spacelike curve with a spacelike principal normal curve model is unique, we may choose any convenient arbitrary basis $\left(N_{1}(s), N_{2}(s)\right)$ for the remainder of the frame, so long as it is in the normal plane perpendicular to $T(s)$ at each point. If the derivatives of $\left(N_{1}(s), N_{2}(s)\right)$ depend only on $T(s)$ and not each other we can make $N_{1}(s)$ and $N_{2}(s)$ vary smoothly throughout the path regardless of the curvature. Therefore, we have the alternative frame equations

$$
\left[\begin{array}{l}
T^{\prime} \tag{1.1}\\
N_{1}^{\prime} \\
N_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
0 & k_{1} & -k_{2} \\
-k_{1} & 0 & 0 \\
-k_{2} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
T \\
N_{1} \\
N_{2}
\end{array}\right] .
$$

where

$$
\begin{aligned}
& \kappa(t)=\sqrt{\left|k_{1}^{2}-k_{2}^{2}\right|}, \\
& \theta(t)=\arg \tanh \left(\frac{k_{2}}{k_{1}}\right), \\
& \tau(t)= \pm \frac{d \theta(s)}{d s},
\end{aligned}
$$

[5], so that k_{1} and k_{2} effectively correspond to a Cartesian coordinate system for the polar coordinates κ, θ with $\theta= \pm \int \tau(s) d s$. The orientation of the parallel transport frame includes the
arbitrary choice of integration constant θ_{0}, which disappears from τ (and hence from the Frenet frame) due to the differentiation.

Now, we will define Bishop darboux vector. The Vectors $T(s), N_{1}(s), N_{2}(s)$ change while a point on the spacelike curve with a spacelike principal normal drawing the spacelike curve with a spacelike principal normal. Hence these vectors constitute of spherical images of the spacelike curve with a spacelike principal normal. Assume that Bishop frame $\left\{T(s), N_{1}(s), N_{2}(s)\right\}$ of the spacelike curve with a spacelike principal normal makes an instantaneous helix motion about an axis at each s time. This axis is called Bishop darboux axis corresponding s parameter at point $\alpha(s)$. The vector giving oriented and direction of this axis is called Bishop darboux vector at point $\alpha(s)$ of the spacelike curve with a spacelike principal normal.

3 The Bishop Darboux Rotation Axis of The Spacelike Curve with a Spacelike Principal Normal

These equations form a rotation motion with Bishop darboux vector,

$$
\varpi=k_{2} N_{1}+k_{1} N_{2}
$$

[5].Also momentum rotation vector is expressed as follows:

$$
\begin{aligned}
T^{\prime} & =\varpi \wedge_{L} T \\
N_{1}^{\prime} & =\varpi \wedge_{L} N_{1} \\
N_{2}^{\prime} & =\varpi \wedge_{L} N_{2} .
\end{aligned}
$$

Bishop darboux rotation of Bishop frame can be separated into two rotation motions. The vector N_{1} rotates with a k_{1} angular speed round the vector N_{2}, that is

$$
N_{1}^{\prime}=\left(k_{1} N_{2}\right) \wedge_{L} N_{1}=k_{1}\left(N_{2} \wedge_{L} N_{1}\right)=-k_{1} T
$$

and the vector N_{2} rotates with a k_{2} angular speed round the vector N_{1}, that is

$$
N_{2}^{\prime}=\left(k_{2} N_{1}\right) \wedge_{l} N_{2}=k_{2}\left(N_{1} \wedge_{L} N_{2}\right)=k_{2} T .
$$

The separation of the rotation motion of the momentum.Bishop darboux axis into two rotation motions can be indicated as such: The vector $E=\frac{w}{\|\varpi\|_{L}}$ rotates with

$$
W=\frac{k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}}{\left|k_{1}^{2}-k_{2}^{2}\right|}
$$

a speed round the tangent vector T, also

$$
E^{\prime}=\left(\frac{\varpi}{\|\varpi\|_{L}}\right)^{\prime}=(W \cdot T) \wedge_{L} \frac{\varpi}{\|\varpi\|_{L}}
$$

and the tangent vector T rotates with a $\|\varpi\|$ angular speed round $\frac{\varpi}{\|\varpi\|}$. Bishop darboux axis, also

$$
T^{\prime}=\varpi \wedge_{L} T
$$

From now on we shall do a further study of momentum Bishop darboux axis. We obtain the unit vector E

$$
E=\frac{\varpi}{\|\varpi\|_{L}}=\frac{k_{2} N_{1}+k_{1} N_{2}}{\sqrt{\left|k_{1}^{2}-k_{2}^{2}\right|}}
$$

from Bishop darboux vector,

$$
\varpi^{\prime}=k_{2}^{\prime} N_{1}+k_{1}^{\prime} N_{2} .
$$

Differentiation of E,

$$
E^{\prime}=\left(\frac{\varpi}{\|\varpi\|_{L}}\right)^{\prime}=\frac{\varpi^{\prime}\|\varpi\|_{L}-\varpi\|\varpi\|_{L}^{\prime}}{\left(\|\varpi\|_{L}\right)^{2}}=\frac{\left(k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}\right)}{\left|k_{1}^{2}-k_{2}^{2}\right|} \frac{\left(k_{1} N_{1}+k_{2} N_{2}\right)}{\sqrt{\left|k_{1}^{2}-k_{2}^{2}\right|}}
$$

is found. From this,

$$
E^{\prime}=W\left(E \wedge_{L} T\right)+0 . T+0 . E
$$

written. According to the Bishop frame,

$$
T^{\prime}=\|\varpi\|_{L}\left(E \wedge_{L} T\right)+0 . T+0 . E
$$

and

$$
\begin{aligned}
\left(E \wedge_{L} T\right)^{\prime} & =E^{\prime} \wedge_{L} T+E \wedge_{L} T^{\prime} \\
& =W\left[\left(E \wedge_{L} T\right) \wedge_{L} T\right]+\|\varpi\|\left[E \wedge_{L}\left(E \wedge_{L} T\right)\right] \\
& =W[-\langle T, E\rangle T+\langle T, T\rangle E]+\|\varpi\|[-\langle E, T\rangle E+\langle E, E\rangle T] \\
& =W \cdot E+\|\varpi\|\langle E, E\rangle T \\
& =0 \cdot\left(E \wedge_{L} T\right)+\varepsilon_{1}\|\varpi\| T+W \cdot E \quad ; \quad \varepsilon_{1}= \pm 1
\end{aligned}
$$

are obtained. These three equations are in the form of the Bishop frames that is

$$
\left[\begin{array}{c}
(E \wedge T)^{\prime} \\
T^{\prime} \\
E^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \|\varpi\|_{L} & W \\
\varepsilon_{1}\|\varpi\|_{L} & 0 & 0 \\
W & 0 & 0
\end{array}\right]\left[\begin{array}{c}
(E \wedge T) \\
T \\
E
\end{array}\right]
$$

where the first coefficient $\|\varpi\|_{L}=\sqrt{\left|k_{1}^{2}-k_{2}^{2}\right|}$ is >0 and second coefficient

$$
W=\frac{\left(k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}\right)}{\left|k_{1}^{2}-k_{2}^{2}\right|}=\frac{\left(\frac{k_{1}}{k_{2}}\right)^{\prime}}{\left|1-\left(\frac{k_{1}}{k_{2}}\right)^{2}\right|} ; k_{2} \neq 0,\left|k_{1}\right| \neq\left|k_{2}\right|
$$

related only to natural harmonic curvature $\frac{k_{1}}{k_{2}}$. Thus, the vectors $\left\{\left(E \wedge_{L} T\right), T, E\right\}$ define a rotation motion together the rotation vector,

$$
\varpi_{1}=\varepsilon_{1}\left\{-W \cdot T+\|\varpi\|_{L} E\right\}=\varepsilon_{1}(-W \cdot T+\varpi) \text { or } \pm(-W \cdot T+\varpi)
$$

Also momentum rotation vector is expressed as follows:

$$
\begin{aligned}
T^{\prime} & =\varpi_{1} \wedge_{L} T \\
\left(E \wedge_{L} T\right)^{\prime} & =\varpi_{1} \wedge\left(E \wedge_{L} T\right) \\
E^{\prime} & =\varpi_{1} \wedge_{L} E .
\end{aligned}
$$

Corollary 3.1 This rotation motion of Bishop darboux axis can be separated into two rotation motions again. Here ϖ_{1} rotation vector is the addition of the rotation vectors of the rotation motions. When continued in the similar way, the rotation motion of Bishop darboux axis is done in a consecutive manner. In this way the series of Bishop darboux vectors are obtained. That is

$$
\varpi_{0}=\varpi, \varpi_{1} \ldots
$$

References

[1] Ahmet Yucesan, A. Ceylan Coken, Nihat Ayyildiz,"On the Darboux rotation axis of Lorentz space curve",Applied Mathematics and Computation 155 ,345-351, 2004
[2] Andrew J. Hanson, Hui Ma, "Parallel Transport Approach To Curve Framing", Indiana University, Techreports- TR425, January 11,1995
[3] Andrew J. Hanson, Hui Ma,"Quaternion Frame Approach to Streamline Visualization," Ieee Transactions On Visualization And Computer Graphics, Vol. I, No. 2, June 1995
[4] Bishop, L.R., "There Is More Than One Way To Frame A Curve", Amer. Math. Monthly, Volume 82,Issue 3, 246-251,1975
[5] B.Bukcu and M.K.Karacan,"Bishop Frame of The Spacelike Curve with a Spacelike Principal Normal in Minkowski 3-Space",Commun.Fac.Sci.Univ.Ank.Series A1,Volume 57, Number 1, Pages:13-22, 2008
[6] B.Bukcu and M.K.Karacan,"The Bishop Darboux Rotation Axis of The Spacelike Curve in Minkowski 3-Space", JFS, Volume 30, pp: 1-5, 2007
[7] O.Munaux, "Cad Interface and Framework for Curve Optimisation Applications",Cranfield University, PhD Thesis,September 2004
[8] W. Barthel, "Zum Drehvorgang Der Darboux-Achse Einer Raumkurve", J. Geometry 49,1994

Murat Kemal Karacan

Usak University, Faculty of Sciences and Arts, Departmant of Mathematics,64200, 1 Eylul Campus
e-mail: murat.karacan@usak.edu.tr, mkkaracan@yahoo.com

Bahaddin Bukcu

Gazi Osmanpasa University, Faculty of Sciences and Arts,
Departmant of Mathematics, Tokat-TURKEY
e-mail: bbukcu@gop.edu.tr, bbukcu@yahoo.com

