CAPÍTULO XXXVI

LA FERTILIZACIÓN IN VITRO COMO HERRAMIENTA
EN EL MEJORAMIENTO DE LA GANADERÍA DOBLE PROPÓSITO

I. INTRODUCCIÓN: Medios Químicamente Definidos
II. TÉCNICA DE FERTILIZACIÓN IN VITRO (IV)
III. LIMITACIONES
IV. POTENCIALES USOS DENTRO DE LA GANADERÍA
 DOBLE PROPÓSITO
V. CONCLUSIONES
VI. LITERATURA CITADA

Hugo Hernández Fucseca
I. INTRODUCCIÓN: Medios Químicamente Definidos

La fertilización in vitro (FIV) ha mostrado importantes avances desde el nacimiento de “Virgil” (primer becerro producto de FIV) en 1981 [3]. Entre dichos avances se encuentra el desarrollo de medios de FIV que permiten la producción de embriones bajo condiciones químicamente definidas, en ausencia de productos de origen biológico como el suero [12]. La utilización de suero y células (co-cultivo) como componentes de los medios usados en los sistemas de FIV ha sido considerada como beneficiosa y en muchos casos hasta indispensable para una eficiente producción in vitro de embriones [4]. Estos componentes podrían proporcionar nutrientes, eliminar factores embriotónicos o simplemente modular favorablemente el microambiente que rodea al embrión. En todo caso la utilización de suero y co-cultivo normalmente se asocia a un crecimiento más acelerado y a una mayor proporción de embriones fertilizados que alcanzan el estadio de blastocito [7, 8].

Sin embargo, el suero y co-cultivo agregan al medio factores desconocidos, sobre los cuales no poseemos control alguno, además de representar posibles fuentes de agentes infecciosos. Han sido realizados importantes esfuerzos para eliminar paulatinamente los componentes de origen biológico de los medios de maduración de gametos, fertilización y cultivo de embriones. En la actualidad, es posible producir embriones bovinos bajo condiciones químicamente definidas, donde todos los componentes químicos son totalmente conocidos y puros (químicamente sintetizados o producto de la tecnología de recombinación del ADN). La transferencia de embriones FIV producidos bajo condiciones químicamente definidas ha producido crías viales [5].

Actualmente gran número de embriones bovinos son producidos sistemáticamente in vitro en diversos laboratorios alrededor del mundo con amplios fines de investigación. La mayoría de estos laboratorios aún dependen de la utilización de suero, albúmina sérica bovina o co-cultivo en sus sistemas FIV para la producción de embriones. No obstante, un número importante de estos embriones no son transferidos a hembras receptoras, por lo cual medimos su capacidad de desarrollo y calidad sobre la base de parámetros indirectos como: aspecto morfológico, grado de desarrollo, número de células, resistencia a la congelación, proporción de células apoptóticas, entre otros.

Es importante que la producción in vitro de embriones se oriente cada vez más en los próximos años hacia la utilización de condiciones definidas. Esto garantizaría un mayor control sobre agentes infecciosos presentes en los componentes de origen biológico actualmente utilizados en la elaboración de medios en sistemas FIV. La adopción de medios químicamente definidos igualmente permitiría obtener resultados de mayor repetibilidad, ofreciendo a los investigadores sistemas libres de interacciones de elementos desconocidos presentes en componentes de origen biológico. Estos esfuerzos han de ser complementados por la evaluación in vivo (transferencia a receptoras) de los embriones producidos bajo condiciones definidas de cultivo [11]. La evaluación in vivo de la capacidad de sobrevivencia embrionaria nos daría una idea más clara y directa de la capacidad de desarrollo y calidad de los embriones FIV.
El presente Capítulo pretende esforzarse al lector la información que le permita adquirir una idea más clara sobre el proceso de producción en el campo de embriones bovinos, alguno de los obstáculos que limitan su aplicación a nivel comercial y sus potenciales usos dentro de la ganadería doble propósito.

II. TÉCNICA DE FERTILIZACIÓN IN VITRO (FIV)

La FIV puede ser dividida en tres etapas bien diferenciadas:

- Maduración in vitro (MIV) de oocitos
- Fertilización in vitro (FIV) propiamente dicha
- Cultivo in vitro (CVI) de embriones.

La MIV busca propiciar la progresión del óvulo primario o inmaduro (bloqueado en profas de la primera división meiótica) hacia un óvulo secundario o maduro (metáfase de la segunda división meiótica). Los oocitos inmaduros son obtenidos a través de la aspiración de foliculos (generalmente con un diámetro entre 2 a 8 mm) presentes en la superficie de ovarios de animales sacrificados o aspirados por vía transvaginal (ovum pick-up) de animales vivos. Generalmente se seleccionan oocitos rodeados por múltiples capas compactas de células del cumulus, con un citoplasma homogéneo, uniformemente granulado y claro.

Los oocitos seleccionados son generalmente colocados en un medio de maduración y incubados durante 24 horas en un ambiente de alta humedad, 5% de CO₂ y protegidos de la luz. El medio de maduración es un medio completo, por lo general basado en el uso de TCM-199 (Medio de Cultivo Tisular 199) [10, 11]. Una vez transcurridas 24 horas de la MIV, los oocitos maduros, en metáfase de la segunda división meiótica (MII) están preparados para ser fertilizados.

La FIV propiamente dicha utiliza espermatozoides móviles y viables proveídos de semen fresco o congelado. La obtención de dichos espermatozoides implica que estos deben ser separados de aquellos espermatozoides inmóviles y muertos presentes en el semen. Existen diversos métodos utilizados para la separación de espermatozoides viables. Entre los más populares se encuentran el swim-up (nadar hacia arriba) y la separación por gradientes. El swim-up se basa en la habilidad de los espermatozoides móviles en nadar hacia la parte superior de una columna de un medio apropiado, separándose así de aquellos espermatozoides inmóviles que permanecen en el fondo del tubo. La separación por gradientes (ejemplo: gradientes de Percoll) se basa en la diferencia de peso entre los espermatozoides vivos y los muertos. Al ser centrífugado por algunos minutos el semen en presencia de este gradiente, los espermatozoides vivos serán separados de los muertos al ubicarse a diferentes niveles del gradiente.

Una vez que se ha logrado obtener una población de espermatozoides viables, estos serán introducidos a sufrir el fenómeno de capacitación espermática. Este proceso es inducido en vitro exponiéndolo a las espermatozoides a soluciones hipertónicas, mercurio, férulas de Ca⁺⁺, cafeína o heparina, entre otros. La exposición a soluciones de heparina, es uno de las alternativas más utilizadas actualmente para lograr la capacitación espermática in vitro. Una vez inducida la capacitación de los espermatozoides, estos ser co-
locados en el medio de fertilización (ejemplo: mDM, TALP) en presencia de los oocistos madurados por un periodo de 6 a 24 horas en un ambiente de alta humedad, 5% de CO₂, y protegidos de la luz [10, 11]. Una vez terminado el proceso de FIV, los presuntos zigotos son transferidos a un medio de cultivo embrionario para comenzar el CIV de embriones (último etapa del proceso de FIV). El CIV procura proveer al embrión con las condiciones necesarias para propiciar una continua división celular, la formación del blastocoele y el normal desarrollo del embrión hasta el estadio de blastocisto.

Durante el CIV, es importante que los medios de cultivo utilizados (ejemplo: SOV) se adapten a los cambios metabólicos y nutricionales que los embriones experimentan en la medida que avanzan en su desarrollo. En nuestro laboratorio, se utilizan tres diferentes medios de cultivo embrionario que diferencian en la concentración de compuestos como glucosa, glutamina y cítrico. Estas variaciones en su composición buscan adaptarse a las necesidades y a las vías metabólicas utilizadas de preferencia por los clínicos de diferentes embarazos. La transferencia sucesiva de embriones de un medio a otro cada 48 a 72 horas, permite además contrarrestar la acumulación excesiva de metabolitos en el medio de cultivo. El CIV tiene una duración total de 6 a 8 días, en un ambiente de elevada humedad, 5% de CO₂ y protegidos de la luz [10, 11]. Luego de 6-8 días en cultivo, entre 20 y 40% de los oocistos seleccionados alcanzan el estadio de blastocisto.

III. LIMITACIONES

La FIV sólo podrá ser ampliamente aplicada en beneficio del productor, si demuestra ser una tecnología eficiente, adaptable a las necesidades del productor y cuyo producto genere beneficios que justifiquen los costos de su aplicación. Con respeto a este deseo final, deseo diferenciado de los otros medios de cultivo embrionario de bajo y alto porcentaje de éxito con el cultivo de embriones producidos in utero [10-11].

1. Baja supervivencia embrionaria. Los embriones FIV se han caracterizado por poseer una baja supervivencia durante la transferencia a hembras receptoras. En los mejores escenarios, su tasa de supervivencia pocas veces supera el 40%, comparable con un 50 a 60% en el caso de embriones producidos in utero (supervivencia) [9].

2. Baja resistencia a la congelación. Al compararse con embriones producidos in utero, los embriones FIV muestran una inferior resistencia a la congelación. La tasa de re-expansión y viabilidad luego de la descongelación es inferior a aquella mostrada por embriones producidos in utero [12].

3. Alta tasa de abortos y anomalías congénitas. Las tasas de abortos en gestaciones de embriones FIV superan significativamente aquella de embriones in vivo [6]. Se han reportado niveles de abortos de hasta 50% luego de la transferencia de embriones FIV a vacas receptoras [13, 14]. Embriones FIV con frecuencia dan origen a fetos de gran peso y tamaño. Este fenómeno conocido como el síndrome del becerro.
grande (Large cull syndrome) ha estado constantemente asociado a la producción in vitro de embriones, especialmente en rumiantes. Este mayor tamaño de los fetos aparece desde muy temprano en la gestación [5]; en algunos casos se ha atribuido su origen a la exposición de los embriones a componentes del suelo o co-cultivos utilizados con frecuencia en los medios de cultivo. Igualmente asociado a embriones FIV se han señalado problemas de distocia, los cuales junto con los pesos excesivos al nacimiento provocan una alta tasa de mortalidad perinatal. Entre las anomalías asociadas con fetos producto de la transferencia de embriones FIV se encuentran necrosis muscular múltiple, enteritis, neumonías e hipoplasiia cerebelar [16].

Se ha señalado que la inferior calidad de los embriones FIV (reflejada en las limitantes señaladas anteriormente) son producto de una expresión genética alterada por las condiciones in vitro en las que son producidos estos embriones. De tal manera que nuestros esfuerzos deben dirigirse a optimizar las condiciones de maduración, fertilización y cultivo in vitro con el fin de incrementar la calidad de los embriones producidos. Esfuerzos en este sentido han utilizado la incorporación a los medios de sistemas in vitro de agentes reductores de radicales libres de oxígeno, medios químicamente definidos y factores de crecimiento, entre otros.

IV. USOS POTENCIALES DENTRO DE LA GANADERÍA DOBLE PROPÓSITO

La FIV ha encontrado diversos campos de aplicación y sus técnicas han sido utilizadas total o parcialmente en la obtención de crías de vacas que ya no responden a los tratamientos superovulatorios o animales valiosos que perecen repentinamente. La FIV también ha asistido en la producción de animales transgénicos y clones.

Quizás una de las aplicaciones potencialmente más importantes de la FIV es la utilización de ovarios de animales sacrificados para la producción de grandes números de embriones de valor comercial. Al compararse el número total de embriones obtenidos y el número de embriones congelables se concluyó que la producción in vitro de embriones era tan eficiente como la obtención de embriones por métodos in vivo (por superovulación); sin embargo, el costo por embrión era mucho más bajo en el caso de la FIV [13]. También se ha comparado la producción in vitro de embriones con la producción in vivo de embriones, concluyendo que cuando el objetivo es obtener un número determinado de gestaciones de un sexo determinado en un corto periodo de tiempo, la FIV es mucho más eficiente [2]. En este último estudio, a pesar de una mayor tasa de mortalidad embrionaria, el número de gestaciones donde el feto era una hembra fue tres veces más alto que el de machos, cuando se utilizó la FIV que cuando se utilizó la superovulación.

Bajos costos de inversión y personal, así como una comprobada eficiencia hacen de la FIV una tecnología que está en condiciones para ser aplicada a gran escala a nivel comercial. Experiencias comerciales previas han confirmado la eficiencia de la técnica al reportar tasas de fertilización de 75.6% y tasas de desarrollo de blastocitos de 28.9% [13]. A pesar de las limitaciones enumeradas en la sección anterior es importante destacar que esfuerzos comerciales a gran escala (2268 embriones FIV transferi-
dos), utilizando embriones FIV frescos del día 7, han resultado en tasas de preñez que superan el 50% [9]. Estos resultados abren la posibilidad de aumentar las posibilidades de la FIV para la producción comercial de ganado bovino.

En el año 2000, se inicio un convenio de colaboración entre universidades y empresas de los Estados Unidos de América y Venezuela, cuyo objetivo principal era en- tre otras, promover la implementación de un programa FIV para la producción de animales mestizos F1 (Brahman x Holstein) en Venezuela. Ovarios de vacas Holstein sacrificadas en Carolina del Sur (U.S.A.) eran transportados al laboratorio de fertiliza- ción in vitro de la Universidad de Georgia (Georgia, U.S.A.), donde se llevaba a cabo el proceso de fertilización in vitro utilizando semen congelado de toros Brahman, además de la congelación de los embriones resultantes. Los embriones congelados eran transportados a Venezuela donde eran transferidos (transferencia directa) por técnicos de la Universidad del Zulia (Maracaibo, Venezuela) y VIATECA (Villa del Rosario, Venezuela). Hasta la fecha se han realizado más de 400 transferencias em- brionarias a novillas receptoras. Los resultados de estas experiencias nos han permiti- do concluir que la transferencia de embriones FIV producidos en medios de compuestos químicamente definida (sin compuestos de origen biológico) arroja ba- jas tasas de preñez (alrededor de un 10%). Aun la adición de diversos factores de creci- miento (ejemplo: IGF-I, EGF, LIF) no logran incrementar significativamente dichas tasas de preñez. Solo la adición de suero al medio de cultivo embrionario y la transfe- rencia de dos embriones por receptora logran aumentar la tasa de preñez a niveles co- mercialmente viables (entre 35 y 55%).

No se han observado prolongaciones significativas de la duración de la gesta- ción. A pesar de que se ha presentado una mayor incidencia de abortos en especial, en- tre el tercer y quinto mes de gestación, no se han observado anomalías congénitas. Las gestaciones que llegan a término resultan en partos normales. No se ha reportado el nacimiento de crías débiles, siendo su crecimiento y desarrollo normal.

V. CONCLUSIONES

La FIV ofrece potencial para en un futuro cercano imponerse como la tecnolo- gía de preferencia en el área de la producción comercial de ganado bovino. Su com- probada eficiencia y la posibilidad de combinarse con otras tecnologías (ejemplo: sección de semen, seacción embrionario) la ubican en un lugar preferencial. Sin embargo, es necesario optimizar medios químicamente definidos que nos permitan mejorar la calidad de los embriones producidos in vitro.

VI. LITERATURA CITADA

